19. Гальченко В.Я., Якимов А.Н. Оптимальное конструирование электромагнитов с коническими полюсами для генерации высокооднородного магнитного поля. – Электронное моделирование, 2010, т. 32, №6: http://www.nbuv.gov.ua/portal/natural/em/texts.html

20. Гальченко В.Я., Якимов А.Н., Остапущенко Д.Л. Использование метода граничных интегральных уравнений в оптимальном 3-D проектировании осесимметричных электромагнитов с выбором формы полюсных наконечников. – Електротехніка і електромеханіка, 2010 , № 6: http://www.nbuv.gov.ua/portal/natural/eie/texts.html

21. Батищев Д.И., Шапошников Д.Е. Многокритериальный выбор с учетом индивидуальных предпочтений. — Нижний Новгород: ИПФ РАН, 1994.

22. Воронін А.М. Зіатдінов Ю.К., Козлов О.І., Чабанюк В.С. Векторна оптимізація динамічних систем. — Техніка, 1999.

23. Афанасьев Ю.В. Феррозондовые приборы. – Л.: Энергоатомиздат, 1986.

24. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники. – М.: Энергия, 1967, т. 2.

25. **Мельгуй М.А.** Формулы для описания нелинейных и гистерезисных свойств ферромагнетиков. – Дефектоскопия, 1987, №11.

[12.04.11]

Авторы: Гальченко Владимир Яковлевич окончил в 1982 г. Ворошиловградский машиностроительный институт. В 1999 г. защитил докторскую диссертацию по специальности «Приборы и методы контроля» в Харьковском государственном политехническом университете. Профессор, заведующий кафедрой «Медицинская и биологическая физика, медицинская информатика, биостатистика» ГУ «Луганский государственный медицинский университет» (ЛГМУ).

Якимов Александр Николаевич окончил в 2004 г. Восточноукраинский национальный университет им. В. Даля и в 2010 г. Луганский национальный университет им. Т. Шевченко. Преподаватель кафедры «Медицинская и биологическая физика, медицинская информатика, биостатистика» ГУ ЛГМУ.

Остапущенко Дмитрий Леонидович окончил в 2005 г. Восточноукраинский национальный университет им. В. Даля. В 2010 г. защитил кандидатскую диссертацию по специальности «Приборы и методы контроля и определения состава веществ» в Национальном техническом университете «Харьковский политехнический институт». Старший преподаватель кафедры «Медицинская и биологическая физика, медицинская информатика, биостатистика» ГУ ЛГМУ.

* * *

Частотные характеристики канала регулирования момента в синхронных электроприводах¹

УСЫНИН Ю.С., ГРИГОРЬЕВ М.А., ШИШКОВ А.Н.

Рассмотрены особенности частотных характеристик канала регулирования электромагнитного момента в частотно-регулируемых электроприводах с синхронными электрическими машинами. Канал регулирования момента рассматривается как линейная система с амплитудной модуляцией.

Ключевые слова: электропривод, частотное регулирование, амплитудная модуляция, синхронный реактивный двигатель

Регулируемые электроприводы переменного тока выполняются по схеме подчиненного регулирования с внутренним контуром косвенного регулирования электромагнитного момента и внешним – скорости. И если в типовых электроприводах постоянного тока между током якоря двигателя и его моментом существует прямая зависимость, что упрощает настройку внутреннего контура, то в электроприводах переменного тока такой явной за-

Specific features relating to the frequency characteristics the channel controlling of for electromagnetic torque in adjustable-frequency electric drives with synchronous electric machines are considered. The control channel is regarded as a linear system with amplitude modulation.

Key words: *electric drive, frequency control, amplitude modulation, synchronous reluctance motor*

висимости нет. Ниже с использованием аппарата частотных характеристик рассмотрены особенности описания динамических свойств канала регулирования электромагнитного момента в частотнорегулируемых электроприводах с синхронными и синхронными реактивными электродвигателями.

Структурная схема канала регулирования момента. Канал регулирования момента (*КРМ*) в частотно-регулируемом синхронном электроприводе следует отнести к многомерным однотипным системам регулирования с амплитудной модуляцией входного сигнала $U_{\rm BX}$ [1, 2]. Последовательность математических операций, с помощью которых описываются процессы передачи сигнала через

¹ Статья написана по результатам работы, проводимой в рамках реализации Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг.»

звенья одной фазы статора синхронного двигателя, иллюстрируется структурной схемой (рис. 1,*a*). Здесь последовательно соединены звенья: $\mathcal{Y}\Phi\Phi T$ – узел формирования фазных токов; KPT – контур регулирования фазного тока статора; $C\mathcal{I}$ – синхронный двигатель.

В математической модели $\mathcal{Y}\Phi\Phi T$ после операции умножения (модуляции) входного сигнала $U_{\rm BX}$ на синусоидальную функцию получается сигнал задания U_3 на входе *КРТ* двигателя:

$$U_3 = U_{\rm BY} \sin \omega_1 t$$

где ω_1 — угловая частота модулирующего сигнала, равная частоте напряжения, задаваемого преобразователю частоты, как правило, датчиком углового положения ротора двигателя; *t* — время.

Рис. 1. Схема прохождения сигнала U_{BX} через однофазный (*a*) и трехфазный (δ) каналы регулирования момента

Модулирующий сигнал $\sin \omega_1 t$ может или генерироваться датчиком углового положения ротора двигателя непосредственно, что наблюдается в схемах частотно-токового формирования момента [3], или пройдя координатные преобразования переменных [4, 5]. В первом случае пространственный результирующий вектор тока статора формируется в полярных координатах, во втором — обычно в ортогональных.

Затем контуром регулирования тока статора KPT сигнал U_3 преобразуется в ток статора *i*. Связь между этими величинами может быть описана, например, передаточной функцией KPT:

$$W_{\rm KDT}(p) = i(p) / U_3(p)$$

Звеном CД учитывается взаимодействие тока фазы статора *i* с возбужденным ротором. Вызванная этим взаимодействием составляющая электромагнитного момента двигателя M_i представлена как результат вторичного умножения (демодуляции) тока *i* на синусоидальную величину той же частоты, что и в $Y\Phi\Phi T$, но со сдвигом по фазе на угол γ :

$$M_i = L_M I_p i \sin(\omega_1 t + \gamma),$$

где $L_{\rm M}$ — максимальное значение коэффициента взаимной индуктивности между обмоткой ротора и одной из фаз статора; $I_{\rm p}$ — ток ротора синхронного двигателя; γ — угол сдвига между синусоидальными величинами, подаваемыми на входы $\mathcal{Y}\Phi\Phi T$ и *СД*.

Прохождение синусоидального сигнала через звенья *КРМ*. Для применения к анализу процессов в частотно-регулируемом электроприводе переменного тока общепринятого аппарата частотных характеристик и передаточных функций рассмотрим прохождение синусоидального сигнала через звенья одной фазы канала регулирования момента.

Подадим на вход канала регулирования момента *КРМ* синусоидальный сигнал частоты ω, т.е.

$$U_{\rm BX} = U_{\rm M} \sin \omega t$$
,

тогда на выходе первого блока умножения (звена *уФФТ*)

$$U_{3} = U_{M} \sin \omega t \sin \omega_{1} t =$$

= 0.5 $U_{M} [\cos(\omega - \omega_{1})t - \cos(\omega + \omega_{1})t].$

Видим, что основная гармоника частоты ω утрачивается, но появляются две гармоники суммарной ($\omega + \omega_1$) и разностной ($\omega - \omega_1$) частот.

Если динамические свойства звена *КРТ* описать амплитудной $A_{\rm KPT}(\omega)$ и фазовой $\phi_{\rm KPT}(\omega)$ частотными характеристиками, то сигнал на его выходе также можно представить суммой двух гармоник суммарной и разностной частот:

$$i = 0.5U_{M}A_{KPT1}(\omega - \omega_{1})\cos[(\omega - \omega_{1})t - \varphi_{1}(\omega - \omega_{1})] - 0.5U_{M}A_{KPT2}(\omega + \omega_{1})\cos[(\omega + \omega_{1})t - \varphi_{1}(\omega + \omega_{1})].$$

Здесь $A_{\text{крт1}}(\omega-\omega_1)$ и $A_{\text{крт2}}(\omega+\omega_1)$ – значения амплитудной характеристики звена *КРТ* при частотах ($\omega-\omega_1$) и ($\omega+\omega_1$); $\varphi_1(\omega-\omega_1)$ и $\varphi_2(\omega+\omega_1)$ – значения фазовой характеристики звена *КРТ* при тех же частотах.

В общем случае эти гармоники отличаются между собой по амплитудам и сдвигам по фазе, лишь в случае безынерционного *КРТ* амплитуды и фазы у них одинаковые.

После вторичного умножения в звене *СД* каждая из гармоник вновь распадется на два слагаемых, тогда

$$M_{i} = iL_{M}I_{p}\sin(\omega_{1}t + \gamma) = 0,25U_{M}L_{M}I_{p}A_{KPT1}(\omega - \omega_{1}) \times \\ \times \{\sin[\omega t + \gamma - \varphi_{1}(\omega - \omega_{1})] - \sin[\omega t - 2\omega_{1}t - \gamma - \varphi_{1}(\omega - \omega_{1})] - \sin[\omega t - 2\omega_{1}t - \gamma - \varphi_{1}(\omega - \omega_{1})] - \sin[\omega t - 2\omega_{1}t - \gamma - \varphi_{1}(\omega - \omega_{1})] - \sin[\omega t - 2\omega_{1}t - \gamma - \varphi_{1}(\omega - \omega_{1})] - \sin[\omega t - \omega_{1}] + \cos[\omega t - \omega_{1}] + \sin[\omega t - \omega_{1$$

$$-\omega_{1})]\}+0.25U_{M}L_{M}I_{p}A_{KPT2}(\omega+\omega_{1})\{\sin[\omega t-\gamma-\phi_{2}(\omega+\omega_{1})]-\sin[\omega t+2\omega_{1}t+\gamma-\phi_{2}(\omega+\omega_{1})]\}.$$

Из последнего выражения следует, что на выходе однофазного канала регулирования момента моносинусоидальный сигнал $U_{\rm BX}$ частоты ω преобразуется в сигнал, содержащий четыре гармоники: две с основной частотой ω , но с разными фазовыми сдвигами, и две гармоники с боковыми частотами ($\omega - 2\omega_1$) и ($\omega + 2\omega_1$).

В трехфазном частотно-регулируемом электроприводе электромагнитный момент синхронного двигателя может быть представлен как результат совместного действия трех соответствующих фазам А, В и С статора параллельно включенных идентичных однофазных каналов регулирования, имеющих общий входной сигнал U_{вх} и сумматор на выходе (рис. 1,б). Особенность этой трехканальной структуры заключается в том, что сигналы, проходящие по основным каналам регулирования, умножаются в звеньях УФФТ и СД на синусоидальные величины, образующие между собой трехфазную симметричную систему. Это приводит к тому, что в сумматоре на выходе системы (который должен содержать двенадцать слагаемых) две тройки синусоид, сдвинутых между собой на 120°, взаимно уравновешиваются, и в выражении для электромагнитного момента остаются лишь две утроенные гармоники основной частоты ω. Амплитуды этих гармоник и значения их фазовых сдвигов определяются частотными характеристиками звена КРТ на боковых частотах ($\omega - \omega_1$) и ($\omega + \omega_1$):

$$\begin{split} M &= M_A + M_B + M_C = M_1(\omega - \omega_1) + M_2(\omega + \omega_1) = \\ &= 0,75U_M L_M I_p A_{KPT1}(\omega - \omega_1) \sin[\omega t + \gamma - \varphi_1(\omega - \omega_1)] + \\ &+ 0,75U_M L_M I_p A_{KPT2}(\omega + \omega_1) \sin[\omega t - \gamma - \varphi_2(\omega + \omega_1)]. \end{split}$$

Анализ выражения для логарифмических частотных характеристик (ЛЧХ) *КРМ*. Рассмотрим приведенное выше выражение для электромагнитного момента синхронного двигателя более подробно.

В простейшем случае считаем *КРТ* безынерционным звеном. В электроприводах с питанием обмоток статора от вентильных преобразователей, работающих в режиме источника тока, полоса пропускания частот *КРТ* доходит до нескольких тысяч радиан в секунду, так что принятое допущение не только упрощает картину процессов, но и незначительно отличает её от истинной.

При безынерционном *КРТ* его амплитудная частотная характеристика $A_{\rm KPT} = {\rm const}$, а фазовая частотная характеристика $\varphi_{\rm KPT} = 0$. Вектор результирующего момента M получается как сумма равных по длине векторов M_1 и M_2 . При этом вектор M_1 опережает вектор $U_{\rm BX}$ на угол γ , а вектор M_2 от-

стает на такой же угол. Выражение для момента приобретает вид

$$M = 1.5U_{\rm BX} L_{\rm M} I_{\rm p} A_{\rm KpT} \cos \gamma,$$

т.е. при постоянной амплитуде синусоидального входного сигнала $U_{\rm BX}$ = const имеем M = const во всей полосе частот. Если γ =0, то направления вектора $U_{\rm BX}$ и слагаемых M_1 и M_2 совпадают.

Рассмотрим в общем случае, как выглядят ЛЧХ канала регулирования момента (*КРМ*) при разных фиксированных значениях ω_1 . При этом будем сопоставлять значения ω_1 и $\omega_{\rm T}$ (частота среза *КРТ*). Для наглядности представим слагаемые M_1 и M_2 в векторной форме. Напомним, что это – синусоидальные величины частоты ω , амплитуды и фазовые сдвиги которых зависят от значений боковых частот ($\omega - \omega_1$) и ($\omega + \omega_1$). Обратимся к векторным диаграммам *КРМ* (рис. 2), когда за базовый (входной) вектор принимается вектор $U_{\rm BX}$, а за выходной — вектор M, представляемый как сумма слагаемых M_1 и M_2 .

Сначала рассмотрим случай, когда $\omega_1 << \omega_{\rm T}$, что наблюдается при работе электропривода на упор, а также в режиме «ползучих» скоростей; тогда $\omega \pm \omega_{\rm T} \approx \omega$, поэтому

$$A_{\mathrm{KPT}1}(\omega - \omega_1) \approx A_{\mathrm{KPT}2}(\omega + \omega_1) \approx A_{\mathrm{KPT}}(\omega);$$

$$\rho_1(\omega - \omega_1) \approx \varphi_2(\omega + \omega_1) \approx \varphi(\omega).$$

Модули слагаемых $M_1(\omega - \omega_1)$ и $M_2(\omega + \omega_1)$ равны, а при изменении ω в равной мере изменяют свою амплитуду и фазовый сдвиг (рис. 2,*a*). Частотные характеристики *КРТ* и *КРМ* в относительных единицах совпадают, выражение для момента приобретает вид

$$M = 1.5 U_{\text{BX}} L_{\text{M}} I_{\text{D}} A_{\text{KDT}}(\omega) \cos \gamma \sin[\omega t - \varphi(\omega)].$$

Когда ω_1 и $\omega_{\rm T}$ сопоставимы по значению и $(\omega - \omega_1)$ и $(\omega + \omega_1)$ отличаются существенно, а из-за

Рис. 2. Сложение составляющих момента в синхронном электроприводе: $a - \omega_1 << \omega_{\rm T}; \delta - \omega_1 \approx \omega_{\rm T}$

влияния инерционностей в звеньях КРТ необходимо учитывать ограниченную полосу пропускания частот КРТ, то слагаемые M_1 и M_2 изменяются по-разному в функции ω. Наиболее значительно эта разница проявляется в области частоты среза ω_т; тогда при значении частоты напряжения на статоре, близком значению этой частоты при $ω_1 \approx ω_{\pi}$, разность частот $(ω - ω_1)$ лежит в пределах рабочей полосы пропускания частот КРТ, где вектор M_1 изменяется незначительно. Другая же боковая частота ($\omega + \omega_1$) выходит за правую границу равномерного пропускания частот, где амплитуда вектора M₂ существенно уменьшается. В результате оказывается $|M_1| > |M_2|$, поэтому значение и направление результирующего вектора $M = M_1 + M_2$ в большей мере определяются вектором M_1 , который изменяется мало (рис. 2,6). На результирующей амплитудной ЛЧХ наблюдается некоторое расширение полосы равномерного пропускания частот при сниженных значениях амплитудной характеристики КРМ, а фазовая ЛЧХ КРМ проходит выше, чем фазовая ЛЧХ КРТ.

Описанное явление проявляется тем сильнее, чем значения ω_1 и, следовательно, угловой скорости двигателя ближе к значению частоты среза ω_T *КРТ*. В диапазоне очень высоких частот тестового сигнала $U_{\rm BX}$, когда $\omega \rightarrow \infty$, при любом конечном значении ω_1 частотные характеристики *КРТ* и *КРМ* совпадают. В районе средних частот, когда значения ω_1 и ω_T близки, эти характеристики отличаются, и для их вычисления следует пользоваться вышеприведенным выражением.

Расчетные и экспериментальные ЛЧХ КРТ и КРМ. Расчет выполнялся для КРМ, в котором замкнутый по току КРТ каждой фазы статора был аппроксимирован колебательным звеном 2-го порядка с передаточной функцией

$$W_{\rm Kpt}(p) = \frac{1}{(1+2\zeta Tp + T^2 p^2)}$$

ЛЧХ, Расчетные соответствующие этой передаточной функции, получены заменой $p = j\omega$ и представлены ДЛЯ удобства В функции безразмерной величины $\omega_{\rm T}$. Амплитудные ЛЧХ КРТ и КРМ были представлены в относительных единицах. За базовые значения амплитуды тока и момента были взяты их значения при $\omega_1 = 0$ и $\omega = 0$. Коэффициент демпфирования был принят равным ζ=0,5, что соответствует стандартной настройке замкнутого КРТ с относительной частотой среза $\omega_{\rm T}T$ =1 и запасом устойчивости по фазе $\Delta \phi \approx 50^{\circ}$. Расчетные ЛЧХ *КРТ* и *КРМ* при $\omega_1 = 0$ совпадают (кривые 1, рис. 3) и соответствуют принятой на

рис. 1, δ модели преобразования токов i_A , i_B , i_C в момент M.

При увеличенных значениях ω_1 , когда угловая скорость электропривода приближается к частоте среза ($\omega_1 \approx \omega_T$), ЛЧХ *КРМ* изменяется (кривые 2,

Рис. 3. Амплитудные (*a*) и фазовые (*б*) ЛЧХ *КРТ* и *КРМ* при $\omega_1 = 0$ (кривые *1*) и *КРМ* при $\omega_1 \approx \omega_T$ (кривые *2*)

рис. 3): её амплитуда снижается, но фазовая ЛЧХ на протяжении примерно декады в районе частоты среза *КРТ* проходит на 40–50° выше, что объясняется доминирующим влиянием первого слагаемого в вышеприведенном выражении для момента. На ЛЧХ *КРМ* по сравнению с фазовой ЛЧХ *КРТ* при значениях $\omega_1 > \omega_T$ увеличенный подъем фазы не только сохраняется, но и несколько увеличивается. Однако практический эффект из этого извлечь не удается, так как получение равномерного усиления *КРТ* на участке с крутым падением значения амплитуды требует неоправданно большой форсировки напряжения источников питания статорных цепей.

Описанное сопоставление ЛЧХ *КРТ* и *КРМ* во всем диапазоне частот показывает следующее. Во-первых, настраивать систему электропривода следует при малых скоростях или даже при заторможенном двигателе, так как эти режимы характеризуются наименьшими запасами устойчивости; во-вторых, на стадии приближенного выбора структуры и параметров корректирующих связей в электроприводе можно заменить внутренний *КРМ* на *КРТ*. Этот кажущийся весьма парадоксальным приём вполне уместен: с одной стороны, он упрощает расчетные процедуры, с другой — наблюдающаяся в этом случае погрешность лишь увеличивает «запас прочности» расчетов. Наконец, необходимо соблюдать принцип разделения движений и настраивать *КРТ* фазных токов статора изолированно от других каналов регулирования.

Экспериментальные ЛЧХ определялись для уточнения принятой математической модели *КРТ*, учета всех значимых факторов, влияющих на динамические характеристики электропривода, подтверждения выводов, полученных при расчете.

Характеристики определялись для КРТ фазы и КРМ электропривода. Функциональная схема экспериментальной установки и ЛЧХ приведены на рис. 4. Для удобства сравнения вариантов относительные значения коэффициентов усиления при низких частотах приняты одинаковыми. Пробный синусоидальный сигнал разных фиксированных частот в диапазоне от 1 до 10000 рад/с подавался с выходных клемм прибора «Вектор» [6] на вход $Y\Phi\Phi T$ и далее поступал на три параллельно работающих КРТ фазных токов статора. Каждый КРТ был выполнен на базе однофазных транзисторных автономных инверторов АИ (типа Maxi-Maestro 25/127). В качестве двигателя СД был применен синхронный генератор БМЗ-4,5 (4,5 кВА; 1500 об/мин; $U_{\text{фаз}} = 127$ В; $I_{\text{фаз}} = 10$ А). Токи фаз измерялись датчиками тока ДТ (Lem HY-05-P). При определении экспериментальных ЛЧХ каждого из локальных КРТ фазы статора СД за выходную переменную принималось напряжение одного из ДT, а за входную – напряжение прибора «Вектор».

При экспериментальном определении ЛЧХ *КРМ* использовались последовательно включенные программируемый контроллер $\Pi Л K$ (Atmega 8535), который выполнял вычислительные операции, соответствующие звену *СД* на рис. 1,*б*, датчик углового положения ротора *ДПР* (тип Omron E6C3-AJ5C) и цифроаналоговый преобразователь *ЦАП* (встроен в Atmega 8535). За выходной сигнал *КРМ* принималось значение оценки момента *М*, получаемое на выходе *ЦАП*.

Экспериментальные ЛЧХ *КРТ* и *КРМ* (рис. 4,6), снятые в схеме с П-регулятором тока и при коэффициенте усиления $K_{\rm KPT} = 5$ разомкнутого контура, образованного звеньями *РТ, АИ, ДТ* (рис. 4,*a*), имеют довольно большую (до (2–4)·10³ рад/с) полосу равномерного пропускания частот. Это позволяет практически полностью ослабить влияние перекрестных связей на характер процессов, вызванных наличием взаимных индуктивностей между обмотками статора. Эксперимент также показал правомерность аппроксимации замкнутого *КРТ* фазы статора колебательным звеном 2-го порядка в диапазоне частот, по меньшей мере, до (2–4)·10³ рад/с. Несколько меньшую полосу равномерного пропускания частот, наблюдаемую в *КРМ* по сравнению с *КРТ*, следует объяснить наличием некоторой инерции в процедуре цифровых преобразований, осуществляемых в *ПЛК*.

Экспериментальные ЛЧХ *КРТ* фазы статора (и, соответственно, *КРМ*) в электроприводе с синхронным реактивным двигателем независимого возбуж-

Рис. 4. Функциональная схема опыта (*a*) и экспериментальные ЛЧХ (*б*): *1* – *КРМ СД*; *2* – *КРТ СД*; *3* – *КРТ* синхронного реактивного двигателя независимого возбуждения

дения [7] имеют полосу равномерного пропускания частот примерно в 2÷3 раза шире (кривые 3, рис. 4, δ). Это можно объяснить тем, что с увеличением числа фаз *m* обмотки статора (эксперимент проводился при *m*=6) и неизменном диаметре его расточки уменьшаются ширина фазной зоны, число витков фазной обмотки и индуктивность её рассеяния.

Заключение. При частотном анализе динамических свойств регулируемых электроприводов переменного тока с синхронными двигателями удобно рассматривать *КРМ* как линейную систему с амплитудной модуляцией [2]. Пользуясь принципом разделения движений, можно независимо рассматривать процессы в фазных *КРТ* и *КРМ*. Применение экспериментальных ЛЧХ позволяет, не усложняя математического описания системы электропривода, автоматически учесть влияние перекрёстных связей, обусловленных наличием взаимной магнитной связи между обмотками в двигателе. Современные автономные инверторы, выполненные на трёхфазных преобразователях, позволяют получить в фазных контурах регулирования тока полосу равномерного пропускания частот несколько тысяч радиан в секунду. Приблизительную оценку динамических свойств контура регулирования момента можно получить, пользуясь лишь ЛЧХ контуров регулирования фазных токов статора.

СПИСОК ЛИТЕРАТУРЫ

1. **Морозовский В.Т.** Многосвязные системы автоматического регулирования. – М.: Энергия, 1970.

2. Шаталов А.С. Преобразования сигналов и изображающих их функций обобщенными линейными системами автоматического управления. – М.;Л.: Энергия, 1965.

3. Бродовский В.Н., Иванов Е.С. Приводы с частотно-токовым управлением. – М.: Энергия, 1974.

4. Слежановский О.В., Дацковский Л.Х., Кузнецов И.С. и др. Системы подчиненного регулирования электроприводов переменного тока с вентильными преобразователями. — М.: Энергоатомиздат, 1983.

5. Вейнгер А.М. Регулируемый синхронный электропривод. – М.: Энергоатомиздат, 1985.

6. **Маурер В.Г.** Средства частотного анализа элементов, устройств и систем управления вентильных электроприводов: Учебное пособие. – Челябинск: Изд-во ЮУрГУ, 1998.

7. Усынин Ю.С., Григорьев М.А., Виноградов К.М. Электроприводы и генераторы с синхронной реактивной машиной независимого возбуждения. — Электричество, 2007, № 3.

[13.07.11]

Авторы: Усынин Юрий Семёнович окончил в 1959 г. энергетический факультет Челябинского политехнического института. В 1994 г. защитил докторскую диссертацию «Следящий дифференциальный электропривод автономных объектов» в Московском энергетическом институте. Профессор кафедры «Электропривод и автоматизация промышленных установок» Южно-Уральского государственного университета (ЮУрГУ).

Григорьев Максим Анатольевич окончил в 2000 г. энергетический факультет ЮУрГУ. В 2004 г. защитил кандидатскую диссертацию «Вентильный электропривод с синхронным реактивным двигателем независимого возбуждения». Доцент кафедры «Электропривод и автоматизация промышленных установок» ЮУрГУ.

Шишков Александр Николаевич окончил в 2004 г. энергетический факультет ЮУрГУ. В 2007 г. защитил кандидатскую диссертацию «Асинхронный электропривод крановых механизмов с дроссельным регулированием скорости». Доцент кафедры «Электропривод и автоматизация промышленных установок» ЮУрГУ.

Вниманию предприятий, организаций, НИИ, вузов России и зарубежных фирм!

Журнал «Электричество» предоставляет свои страницы для

• РЕКЛАМЫ ИЗДЕЛИЙ отечественных предприятий и зарубежных фирм

в области энергетики, электротехники, электроники, автоматики

• ПУБЛИКАЦИИ ОБЪЯВЛЕНИЙ о научных симпозиумах, конференциях, совещаниях, семинарах

• ДРУГОЙ ИНФОРМАЦИИ, соответствующей тематике журнала

Сообщаем, что журнал поступает к зарубежным подписчикам во многих странах мира. Напоминаем наш адрес: 101000 Москва, Главпочтамт, а/я 648. Тел./факс (7-495)362-7485