Электродинамическая модель шаровой молнии

БАРАНОВ М.И.

Предложена электродинамическая модель шаровой молнии, содержащая внутреннее высокотемпературное тороидальное ядро и внешнюю высокополяризованную водяную оболочку. Основу ядра такого вида молнии составляют элементарные электронные высокотемпературные микроторы, образованные в воздушной атмосфере вблизи сильноточного канала разряда линейной молнии или другого разряда с током короткого замыкания нерелятивистскими электронами, которые одновременно вращаются с циклотронной частотой по ларморовским радиусам и движутся по кругу вдоль силовых линий магнитной индукции в зоне изгиба указанных разрядных высокоионизированных каналов. Спирально-кольцевые электронные токи ядра этой молнии генерируют вокруг него сильное импульсное азимутальное магнитное поле и сверхсильное вихревое радиальное электрическое поле. Выполненные эксперименты по созданию в лаборатории сферических низкоэнергетических плазмоидов подтвердили некоторые положения предложенной модели шаровой молнии.

Ключевые слова: электрический разряд, линейная и шаровая молния, плазмоиды, ток, магнитное поле, электрическое поле, моделирование

В [1-3] была предложена и математически описана микродипольная модель шаровой молнии (ШМ), образующейся в воздушной атмосфере и содержащей в своем центре внутреннее сплошное отрицательно заряженное сферообразное электронное ядро радиусом r_{0e} и внешнюю полую электронейтральную водяную оболочку радиусом r₀ с многочисленными сферическими слоями радиально ориентированных электрических диполей высокополяризованных микрочастиц-сфероидов, состоящих из полярных округлых молекул воды радиусом $r_m > 1,925 \, \mathrm{k} \, \mathrm{0}^{-10}$ м, имеющих собственный электрический дипольный момент $p_m \approx 6.2 \times 10^{-30}$ Клжи [4]. Водяная оболочка в микродипольной (по сути кластерной) модели ШМ как изолирует ее заряженное высококонцентрированное энергетическое электронное ядро от окружающей среды и тем самым увеличивает время его «жизни», так и аккумулирует электрическую энергию в вакуумных нанозазорах размером до 2r_m между своими микродиполями-сфероидами [1-3]. Одним из основных недостатков этой модели ШМ явилось то, что в ее основу было положено лишь электростатическое взаимодействие связанных зарядов обеих полярностей

An electrodynamic model of ball lightning containing an inner high-temperature toroidal energy core and an outer highly polarized water shell is proposed. The core of such lightning is mainly composed of elementary high-temperature electron microtores generated in the air near the heavy-current channel of linear lightning discharge or short-circuit current arc discharge by nonrelativistic electrons that simultaneously rotate at cyclotron frequency over the Larmor radiuses and make a circular motion along the magnetic induction lines in the bending zone of the above-mentioned highly ionized channels. The spiral-annular electronic currents circulating in the core of this lightning generate a strong impulse azimuthal magnetic field and a superstrong vortex radial electric field around it. The laboratory experiments aimed at generating spherical low-energy plasmoids confirmed some of the statements of the proposed ball lightning model.

Key words: electric discharge, linear and ball lightning, plasmoids, current, magnetic field, electric field, modeling

с поверхностной плотностью $s_m = 5e_0 / pr_m^2$, где $e_0 = -1,602 \times 10^{-19}$ Кл — электрический заряд электрона, электрических диполей микрочастиц-сфероидов воды оболочки ШМ друг с другом и с неподвижными свободными нерелятивистскими электронами сферического ядра рассматриваемого природного электрофизического феномена. Учитывая, что в соответствии с опытными данными международных наблюдений природной ШМ [5] предвестником этого атмосферного явления обычно является линейная молния (ЛМ), быстро протекающая в земной атмосфере (при длительности ее длинных сильноточных искровых разрядов в течение порядка 1 с [6]), то более вероятным процессом образования и существования в воздушной атмосфере ШМ должен служить не электростатический, а электродинамический процесс, сопровождающийся ее достаточно быстрым возникновением, относительно медленным протеканием и взрывообразным или бесшумным распадом ее внутреннего энергетического ядра и внешней оболочки. В этой связи целесообразно усовершенствовать микродипольную модель ШМ, внеся в нее элементы

классической электродинамики, характерные для природной ШМ.

Постановка задачи исследования ШМ в воздушной атмосфере. Рассмотрим локальную область воздушной атмосферы, в которой может протекать либо природная ЛМ с ее сильноточным грозовым электрическим разрядом, либо происходить дуговой электрический разряд, обусловленный как случайными аварийными режимами в электрических сетях переменного напряжения с протеканием тока короткого замыкания (КЗ), так и нормальными режимами работы высоковольтных сильноточных электроустановок различного технологического назначения.

Пусть атмосферные условия удовлетворяют нормальным (температура воздушной среды $T_0 = 0$, а ее давление $p_0 = 1,013 \times 10^5$ Па [7]) и в этой воздушной области присутствуют многочисленные полярные молекулы и микрочастицы воды. Принимаем, что из-за воздействия внешнего электрического поля с напряженностью Е_в (например от сильноточного канала ЛМ или дугового разряда в цепи электроустановки) наступает дополнительная электронная и ориентационная поляризация полярных микросфер воды и в них возникают индуцированные электрические дипольные моменты p_{ρ} , а молекулы и микрочастицы воды принимают форму, близкую к вытянутым сфероидам [1, 7]. Считаем, что закругленные наименьшим радиусом r_m торцы этих микрочастиц-сфероидов воды, состоящих из полярных молекул влаги, на своих поверхностях содержат поляризационные некомпенсированные связанные электрические заряды противоположной полярности с поверхностной плотностью S_e, примерно равной поверхностной плотности s " зарядов для полярных молекул воды радиусом r_m. Допускаем, что молекулы и микрочастицы-сфероиды воды согласно теории ориентационной поляризации полярных диэлектриков во внешнем электрическом поле с напряженностью E_в будут всегда направлены по этому полю [1, 4, 7]. В этом случае векторы их электрических дипольных моментов *p_m*, *p_e* и напряженности внешнего электрического поля Е_в будут совпадать по направлению. Используем известное положение, лежащее в основе явления диэлектрофореза в неоднородном электрическом поле [8], согласно которому на полярную молекулу воды и соответственно на микрочастицу-сфероид влаги в подобном поле будет действовать электрическая сила, втягивающая такую молекулу и эту микрочастицу в зону с более сильным полем [4]. С учетом неоднородного характера радиального распределения напряженности электрического поля $E_{\rm p}$, вызванной в воздушной атмосфере

сильноточным цилиндрическим каналом ЛМ или дугового разряда с током КЗ, принимаем, что в рассматриваемой атмосферной области могут возникать физические условия, приводящие к радиальному послойному формированию вокруг вероятного энергетического ядра ШМ, содержащего избыточные электронные токи, ее микродипольной водяной оболочки [1, 8]. Как и в [1-3], полагаем, что расстояние между торцами диполей микрочастиц-сфероидов влаги соседних слоев водяной оболочки, а также между микродиполями этой оболочки и энергетическим ядром ШМ равно примерно габаритным размерам молекулы воды 2r_m. Для описания в дальнейшем энергетического ядра ШМ воспользуемся известным в физике плазмы понятием плазмоила. представляющего собой сравнительно небольшой объем овальной формы, заполненный высокотемпературной плазмой, удерживаемой собственным магнитным полем [9, 10].

Пусть данное магнитное поле плазмоида, находящегося в воздушной атмосфере с внешним по отношению к нему давлением p_0 , создается электрическим током, протекающим в его высокоионизированной плазме. Считаем, что в рассматриваемом плазмоиде - потенциальном энергетическом ядре ШМ — из-за сильного внешнего электромагнитного влияния (например из-за действия сильного азимутального магнитного поля от сильноточного цилиндрического канала ЛМ или дугового разряда с током КЗ) могут создаваться условия, обеспечивающие как пространственное разделение его отрицательно и положительно заряженных частиц, так и их направленное в противоположные стороны практически без столкновений круговое движение. Требуется с учетом принятых допущений разработать усовершенственную микродипольную модель ШМ с внешней поляризованной электронейтральной водяной оболочкой, внутреннее энергетическое ядро которой может представлять собой замкнутую систему движущихся круговым образом электрических зарядов, а также выполнить в лабораторных условиях экспериментальные исследования, результаты которых могут указывать на принципиальную возможность получения искусственным путем подобных плазменно-кластерных образований сферической формы с собственным магнитным полем.

Математическое моделирование плазмоида ШМ. Рассмотрим электродинамические процессы, протекающие в воздушной атмосфере вблизи изгиба сильноточного канала разряда ЛМ [11] или дугового разряда в цепи высоковольтной электроустановки. Изгиб канала указанных разрядов для нас интересен тем, что именно в его зоне в слабоионизированной плазме (при степени ее ионизации порядка $m \ge 10^{-6}$ и концентрации в ней свободных электронов $n_e \ge 7 \ge 10^{16}$ м⁻³ [12]), окружающей сильноточный канал воздушного электрического разряда, может происходить процесс формирования замкнутого кольцевого тока проводимости, способного стать в будущем энергетическим ядром ШМ. Остановимся далее на основных электрофизических моментах возможного создания такого электрического тока в слабоионизированной двухкомпонентной плазме, находящейся вблизи изгиба сильноточного канала электрического разряда (рис. 1).

Рис. 1. Схематическое изображение цилиндрического высокоионизированного канала сильноточного грозового (дугового) электрического разряда в воздушной атмосфере и движущихся по циклоидам вблизи его изгиба вокруг круговых линий магнитной индукции разрядного плазменного канала свободных электронов: *1* – разрядный канал; *2* – электроны

Образование электронных и протонных колец вблизи канала разряда. Следует отметить, что на процесс возможного создания подобных проводящих колец в слабоионизированной плазме вокруг канала разряда ЛМ было указано еще в [11] при описании расчетной модели ШМ. возникающей при развитии в воздушной атмосфере ЛМ и содержащей в центре вакуумную сферическую полость, образовавшуюся при детонации водородно-кислородной смеси и окруженную положительно заряженным энергетическим ядром, состоящим из протонных колец, и внешней поляризованной водяной оболочкой. Учитывая поступающую от рассматриваемого цилиндрического канала электрического разряда в воздушную среду энергию интенсивного излучения (прежде всего, ультрафиолетового [11, 12]) и возникающий в ней (газовой среде) резко неоднородный радиальный градиент температуры, появляющиеся в воздухе вблизи канала свободные электроны и положительно заряженные ионы будут характеризоваться наличием у них превалирующих радиальных скоростей v_{er} и v_{pr} соответственно. Движение таких частиц в азимутальном магнитном поле разрядного канала с продольным импульсным током i_p и круговой напряженностью H_p (см. рис. 1), на которые воздействуют соответствующие центростремительные силы Лоренца $F_{eL} = e_0 m_0 v_{er} H_p$ и $F_{pL} = q_p m_0 v_{pr} H_p$ ($m_0 = 4p \times 10^{-7}$ Гн/м – магнитная постоянная, q_p – значение заряда иона), согласно законам классической механики и электродинамики будут описываться следующими уравнениями движения [13]: для свободных электронов

$$m_e = \frac{dv_{er}}{dt} = e_0 \,\mathsf{m}_0 \,v_{er} \,H_p; \tag{1}$$

для ионов

$$m_p = \frac{dv_{pr}}{dt} = q_p \,\mathsf{m}_0 \,v_{pr} \,H_p, \tag{2}$$

где m_e , m_p — масса покоя электрона и иона соответственно ($m_e \gg 9,108 \times 10^{-31}$ кг, $m_p \gg 1836 m_e$ [7]).

Для наглядности и простоты анализа в дальнейшем ограничимся рассмотрением в приканальной зоне наиболее легких однозарядных ионов - протонов $(q_p = |e_0| = 1,602 \times 10^{-19}$ Кл), образующихся вблизи разрядного канала из атомов водорода при их ионизации. В соответствии с (1) и (2) электроны и протоны под действием сил Лоренца F_{eL} и F_{pL}, перпендикулярных их скоростям v_{er} и v_{pr} , будут осуществлять круговое вращение вокруг замкнутых линий напряженности H_n внешнего азимутального магнитного поля. Причем, это движение рассматриваемых частиц разноименного заряда по окружностям радиусами r_e и r_n будет происходить в противоположных направлениях, а плоскости данных окружностей будут перпендикулярны линиям магнитной индукции внешнего поля, генерируемого током i_p разрядного канала. Радиусы r_e и r_p , называемые ларморовскими радиусами вращения заряженных частиц в магнитном поле [12, 13], с учетом (1) и (2) определяются из следующих соотношений: для свободных электронов

$$\frac{m_e v_{er}^2}{r_e} = e_0 \,\mathfrak{m}_0 v_{er} H_p; \qquad (3)$$

для протонов

$$\frac{m_p v_{pr}^2}{r_p} = e_0 m_0 v_{pr} H_p,$$
(4)

откуда ларморовские радиусы вращения свободных электронов и протонов в азимутальном магнитном поле сильноточного канала грозового (дугового) электрического разряда в воздушной атмосфере равны:

$$r_e = \frac{m_e v_{er}}{e_0 m_0 H_p};$$
(5)

$$r_p = \frac{m_p v_{pr}}{e_0 m_0 H_p}.$$
 (6)

Из (5) и (6) видно, что для нахождения численных значений радиусов r_e и r_p необходимо знать значения скорости электронов v_{er} и протонов v_{pr} в воздушной среде, а также уровень напряженности Н_n магнитного поля вблизи разрядного канала радиусом r_к. Соотношение между радиусами протонных и электронных колец в приканальной зоне согласно (5) и (6) оказывается равным $r_p / r_e = (m_p v_{pr}) / (m_e v_{er})$. Считая температуру электронов T_e и протонов T_p примерно равной в плазме, прилегающей снаружи к разрядному каналу, приближенно оценим значения скоростей v_{er} и v_{pr}. Для этого вначале по известным амплитудно-временным параметрам (АВП) разрядного тока i_n в канале найдем максимальную электронную температуру T_{me} в этом канале и вблизи него. Для этого используем приближенное расчетное соотношение (6) из [14], согласно которому искомое значение температуры в сильноточном канале воздушного искрового разряда равно:

$$T_{me} = 5,834 \sqrt{\frac{(I_{mp})^{1/3}}{s_c t_{mp}}},$$
(7)

где I_{mp} , t_{mp} – первая амплитуда разрядного тока в плазменном канале и время ее достижения соответственно; $s_c = 5,67 \times 10^{-8}$ Вт $(m^2 K^4)^{-1}$ – постоянная Стефана—Больцмана [7].

Для АВП тока воздушного сильноточного разряда, характерного для ЛМ ($I_{mp} \approx 200$ кА; $t_{mp} \approx 10$ мкс [6]), из (7) следует, что в этом случае $T_{me} \approx 18,6 \pm 0^3$ К (около 1,6 эВ [13]). При сравнении значения T_{me} , полученного по (7), с известными в области техники и электрофизики высоких напряжений результатами можно отметить, что согласно приведенным в [12] данным температура в сильноточном плазменном канале на стадии обратного искрового разряда ЛМ достигает ~ 20 $\pm 0^3$ К при плотности свободных электронов в нем около $n_e \approx 10^{23}$ м⁻³.

Учитывая указанные значения для T_{me} в плазменном канале разряда ЛМ, вблизи подобного токового канала для максимальной электронной температуры в окружающей его слабоионизированной плазме при определении в ней значений скорости электронов v_{er} и протонов v_{pr} можно обоснованно принять, что ее значение составляет примерно 1 эВ (около 11600 К [13]). Тогда при $T_{me} \gg T_{mp}$ в приближении максвелловского закона распределения скоростей частиц в плазме для численной оценки искомых скоростей теплового движения электронов v_{er} и протонов v_{pr} в плазме вокруг сильноточного разрядного канала ЛМ или дугового разряда можно воспользоваться следующими формулами:

$$v_{er} = \overset{\widetilde{\Theta}^{3k}_B T_{me}}{\overset{\widetilde{\Theta}^{1/2}}{\overset{\widetilde{\Theta}^{-1$$

$$v_{pr} = \overset{\mathfrak{B}}{\overset{\mathsf{C}}{\mathsf{g}}} \frac{k_B T_{me}}{m_p} \frac{\overset{\mathsf{O}}{\overset{\mathsf{C}}{\mathsf{g}}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\mathsf{g}}}}, \qquad (9)$$

где $k_B = 1,38 \times 10^{-23}$ Дж/К — постоянная Больцмана [7].

Из (8) и (9) при $T_{me} \gg 1$ эВ следует, что для свободных электронов средняя скорость их теплового движения в приканальной зоне может составлять примерно $v_{er} \gg 7,26 \times 10^5$ м/с, а для протонов – $v_{pr} \gg 1,69 \times 10^4$ м/с. Что касается уровня напряженности H_p внешнего магнитного поля в рассматриваемой плазме, то для его оценки сверху в зоне с текущим радиусом $r_{\rm T} > r_{\rm K}$ (см. рис. 1) используем расчетное выражение, вытекающее из закона полного тока:

$$H_p = \frac{I_{mp}}{2\mathsf{p}r_{\mathrm{T}}},\tag{10}$$

где $r_{\rm T} = r_{\rm K} + Dr$; $Dr^3 r_p$ — размер пространственного зазора между наружной поверхностью цилиндрического канала разряда радиусом $r_{\rm K}$ и центрами ближайших к каналу окружностей электронных и протонных колец; $r_{\rm K} \approx 0.093 (I_{mp})^{1/3} (t_{mp})^{1/2}$ — максимальный радиус сильноточного искрового канала воздушного разряда, соответствующий формуле Брагинского [15].

При прежних АВП импульсного тока грозового разряда ($I_{mp} \approx 200$ кА; $t_{mp} \approx 10$ мкс; $r_{\rm K} \approx 17,2$ мм) и Dr ≈ 3 мм из (10) находим, что $H_p \approx 1,57 \times 10^6$ А/м (этой напряженности в воздухе соответствует магнитная индукция $B_p = m_0 H_p \approx 1,98$ Тл). Видно, что в приканальной зоне сильноточного искрового разряда ЛМ генерируется сильное импульсное азимутальное магнитное поле. В результате из (5) и (6) при $v_{er} \approx 7,26 \times 10^5$ м/с, $v_{pr} \approx 1,69 \times 10^4$ м/с и $H_p \approx 1,57 \times 10^6$ А/м получаем, что вблизи разрядного

канала ЛМ создаются вращающиеся во взаимно противоположных направлениях электронные и протонные кольца, имеющие ларморовские радиусы $r_e \gg 2,12,1$ мкм и $r_p \gg 89,8$ мкм. Соотношение r_p / r_e для грозового разряда в воздушной атмосфере оказывается равным 42,8. Это означает, что круговые орбиты огромного множества свободных электронов будут проходить внутри круговых протонных орбит, замыкающихся вокруг кольцевых линий напряженности H_p разрядного канала относительно далеко снаружи от «роя» быстро вращающихся нерелятивистских электронов. При этом рассматриваемые электроны и протоны на окружностях с ларморовскими радиусами r_e и r_p будут круговым образом вращаться с циклотронными частотами [12, 13], определяемыми с учетом (5) и (6) из следующих выражений:

$$w_e = \frac{v_{er}}{r_e} = \frac{e_0 m_0 H_p}{m_e};$$
 (11)

$$w_p = \frac{v_{pr}}{r_p} = \frac{e_0 m_0 H_p}{m_p}.$$
 (12)

Из (11) и (12) следует, что для проводящих электронных и протонных колец, формирующихся в слабоионизированной плазме снаружи канала искрового (дугового) воздушного электрического развыполняется ряда, соотношение $w_e / w_p = m_e / m_p$ » 1836. Подставив в (11) и (12) принятое нами значение для напряженности H_n »1,57 \star 0⁶ А/м, находим, что для вращающихся электронов циклотронная частота w $_{e}$ » 3,47
х 0^{11} Гц, а для протонов — $w_p \approx 1,89 \times 10^8$ Гц. Интересно отметить, что для случая развития в воздушной атмосфере ЛМ вблизи ее сильноточного канала разряда только в одном элементарном проводящем торе с принятым радиусом $r_{\rm T} \approx 20,2$ мм, ограниченном снаружи протонными кольцами радиусом $r_p \gg 89,4$ мкм, при плотности электронов $n_e > 7 \times 10^{16}$ м⁻³ в слабоионизированной плазме, окружающей канал, может содержаться до 22,3x10⁷ электронных колец радиусом r_e » 2,1 мкм.

Таким образом, благодаря существенному различию в скоростях v_{er} и v_{pr} теплового движения свободных электронов и протонов, их собственных массах покоя m_e и m_p и ларморовских радиусах r_e и r_p их вращения в сильном импульсном магнитном поле разрядного канала в воздушной атмосфере ЛМ в приканальной зоне происходит пространственное разделение указанных электрических зарядов в образующейся в ней (этой зоне) слабоионизированной плазме. Для многозарядных и соответственно более тяжелых положительно заряженных ионов, которые могут присутствовать в воздухе и соответственно в рассматриваемой плазме, подобное разделение электрических зарядов при

прежних токовых и полевых характеристиках для разрядного высокоионизированного канала в воздушной среде будет еще более выраженным. Такое вызванное внешним азимутальным магнитным полем канала разряда пространственное разделение в исследуемой плазме электронов и, в частности, протонов, встречно вращающихся по своим отдельным кольцам с огромными циклотронными частотами W_e и W_p, создает условие для движения этих заряженных частиц без столкновений. Причем, чем выше амплитудные значения разрядного тока I_{mp} в канале и напряженности H_p магнитного поля вокруг него, а значит и меньше согласно (5) и (6) значения ларморовских радиусов r_e и r_p , тем более вероятно наступление подобного режима движения указанных частиц.

Образование спирально-кольцевого электронного тока вблизи канала разряда. Для появления в приканальной зоне замкнутых импульсных токов проводимости, охватывающих высокоионизированный разрядный канал, необходимо возникновение вдоль образующихся в этой зоне проводящих электронных и протонных колец продольного импульсного электрического поля с замкнутыми по кругу линиями его напряженности. Такое вихревое электрическое поле во внутренних электронных и наружных протонных элементарных микроторах с главными радиусами $r_{\text{T},2}$, состоящих из указанных электронных и протонных колец в своих поперечных радиальных сечениях с ларморовскими микрорадиусами r_e и r_p, возникает благодаря явлению электромагнитной индукции [13], вызывающему с учетом своего электрофизическоого микромеханизма действия [16] появление в этих пока неподвижных в плоскостях ХҮ (рис. 1) с окружностями длиной 2рг_{т.Э} проводящих микрообразованиях соответствующих электродвижущих сил (ЭДС) И, и U_n. Для упрощения численных оценок значений возникающих в данном случае ЭДС U_e »U_p воспользуемся некоторым эквивалентным электронным макротором с главным радиусом $r_{\rm T}$, имеющим в своем поперечном радиальном круглом сечении макрорадиус $r_{eT} >> r_e$ (рис. 2).

Появлению указанной ЭДС U_e в таком электронном макроторе радиусом $r_{\rm T}$, содержащем множество элементарных электронных микроторов с радиусами $r_{\rm T.9}$, как раз и содействует изгиб разрядного канала. В зоне изгиба сильноточного канала разряда ЛМ или дугового разряда в силовой электрической цепи (рис. 3) напряженность $H_{\rm B}$ внешнего азимутального магнитного поля разрядного канала в воздушном пространстве приобретает такое направление, при котором образуемый ею (этой напряженностью) изменяющийся во времени

магнитный поток $F_{\rm B}$ пересекает плоскости электронных и протонных элементарных микроторов с окружностями длиной $2pr_{\rm T.9}$. В результате воздействия такого магнитного потока на введенный эквивалентный электронный макротор с главным радиусом $r_{\rm T}$ и радиусом $r_{e\rm T}$ сечения его кольца в нем будет возникать переменная ЭДС U_e [7]:

$$U_e \gg pm_0 (r_T^2 - r_K^2 - 2r_T r_{eT}) \frac{dH_B}{dt}.$$
 (13)

Считаем, что скорость изменения во времени t напряженности $H_{\rm B}$ соответствует производной $dH_{\rm p}/dt$, численное значение которой при принятых нами АВП импульсного тока разряда ЛМ I_{mp} »200 кА; t_{mp} »10 мкс; $r_{\rm K}$ »17,2 мм; $H_{\rm p}$ »1,57 $\pm 0^6$ А/м) в приканальной зоне для

Рис. 2. Упрощенная структура электродинамической модели ШМ с центральным тором спирально-кольцевого электронного тока и внешней поляризованной электронейтральной водяной оболочкой, состоящей из множества сферообразных слоев микродиполей-сфероидов воды (показан радиальный срез лишь одной четвертой части поперечного сечения ШМ)

Рис. 3. Принципиальная электрическая схема экспериментальной высоковольтной конденсаторной электроустановки, воспроизводящей в атмосферном воздухе над специальной ДЭС изоляционной РК с технической водой сферические низкоэнергетические плазмоиды искусственной ШМ: 1 - цилиндрический графитовый электрод ДЭС; 2 - изогнутый канал дугового разряда; 3 - техническая вода; 4 - вероятный тор спирально-кольцевого электронного тока; 5 - плоский алюминиевый электрод; 6 - радиочастотный кабель с медной жилой и снятой оплеткой; 7 - корпус из оргстекла рабочей камеры; 8 - генератор ГВПИ на импульсное напряжение ± 100 кВ; 9 - измерительный шунт ШК-300; - многозазорный воздушный коммутатор МЗК-100; $L_{\rm p} \approx 2$ мкГн; $C_{\rm p} \approx 840$ мкФ – индуктивность и емкость разрядной цепи электроустановки

 $r_{\rm T}$ » 20,2 мм (Dr » 3 мм) может составлять примерно 1,57**х**0¹¹ А/(м**х**). Тогда из (13) при указанных исходных данных и ret »1 мм находим, что индуцируемая ЭДС в эквивалентном электронном макроторе радиусом r_т в зоне изгиба разрядного канала составит U_e » -44,5 В. Появление такой ЭДС в электронном макроторе с принятыми радиусом r_т и поперечным радиальным круглым сечением радиусом r_{ет} (см. рис. 2) приведет к круговому движению его свободных электронов вдоль окружности длиной 2 р*r*_т. Из области физики высоких энергий и ускорительной техники известно, что индуцированное в электронном кольце макрорадиусом $r_{\rm T}$ ускоряющее напряжение U_{ρ} вызовет ускорение нерелятивистских электронов указанного макротора, предварительно вращающихся по окружностям с ларморовскими микрорадиусами r_e, до линейных скоростей v_{et}, определяемых из [13]:

Безусловно, что при данном ускорении свободных электронов рассматриваемого макротора должны обеспечиваться условия для их кругового движения практически без столкновений. В связи с описанным ранее реальным механизмом пространственного разделения электрических зарядов (на примере электронов и протонов) в слабоионизированной плазме вокруг сильноточного высокоионизированного разрядного канала, на мой взгляд, такие условия в приканальной зоне у изгиба канала могут возникать. Кроме того, этому будет также способствовать то важное обстоятельство, что вращающиеся с циклотронной частотой W_ρ по окружностям с ларморовскими радиусами r_e свободные электроны в своих элементарных микроторах с главными радиусами $r_{\rm T.9}$ снаружи от возможного проникновения в область их нахождения других частиц защищены протонными кольцами с вращающимися по их окружностям с ларморовскими радиусами $r_p >> r_e$ и с циклотронной частотой $W_p < < W_e$ многочисленными протонами. Кстати, подобное устройство вблизи изгиба канала ЛМ элементарных электронных микроторов с главными радиусами r_{т.Э} и с круговым образом вращающимися согласно с линейными скоростями v_{et} (14) по окружностям длиной 2pr_{т.Э} электронами, окруженными снаружи сильным азимутальным магнитным полем с напряженностью H_p разрядного канала и элементарными полыми протонными микроторами с подобными радиусами r_{т.Э} и ларморовскими радиусами r_p их круглых радиальных поперечных сечений (этими полностью ионизированными своеобразными защитными тепловыми

скин-слоями электронных микроторов), в соответствии с [10] будет способствовать защите высокотемпературной плазмы потенциально образующихся плазмоидов от окружающего ее холодного воздуха. Численная оценка по (14) уровня возможных линейных скоростей v_{ет} электронов в рассматриваемом макроторе радиусом $r_{\rm T}$ » 20,2 мм, образующемся вблизи изгиба канала воздушного разряда ЛМ, показывает, что при $|U_e|$ » 44,5 В они при своем спирально-кольцевом (циклоидальном) движении (см. рис. 1 и 2) принимают значение около 3,95x10⁶ м/с. Данной скорости электронов соответствует их круговая частота вращения $W_{eT} = v_{eT} / r_T$ в указанном электронном торе, равная около $1,95 \pm 0^8$ с⁻¹, и период обращения, составляющий примерно $T_{\rho_{\rm T}} = 2p / W_{\rho_{\rm T}} \approx 32,22$ нс. Следует отметить, что после индуцирования в элементарных электронных и протонных микроторах ЭДС U_e »U_n из-за кругового движения во взаимно противоположных направлениях вокруг разрядного канала в плоскостях ХҮ электронов и протонов в соответствующих элементарных микроторах с главными радиусами r_{т э} и ларморовскими радиусами re и rp будет происходить обжатие электронных микроторов. По-видимому, это может приводить к повышению плотности электронов n_{ρ} в них. Верхним уровнем для электронной концентрации при этом может оказаться значение, характерное для сильноточного искрового (дугового) электрического разряда и равное примерно $n_{\rho} \approx 7 \times 10^{21}$ м⁻³ [12].

Отрицательный электрический заряд q_{eT} , протекающий в принятом электронном макроторе с радиусами r_T и r_{eT} , можно приближенно оценить по формуле

$$q_{eT} \approx 2p^2 e_0 n_e r_T r_{eT}^2$$
. (15)

Из (15) при $n_e > 7 \pm 0^{21}$ м⁻³ и выбранных геометрических параметрах электронного тора ($r_T > 20,2$ мм; $r_{eT} > 1$ мм) следует, что значение q_{eT} окажется равным 4,47 $\pm 0^{-4}$ Кл. Расчетное соотношение для приближенного определения максимального значения электронного тока проводимости i_{eT} в данном высокопроводящем торе с электронами примет следующий вид:

$$i_{e_{\mathrm{T}}} \approx \frac{q_{e_{\mathrm{T}}}}{T_{e_{\mathrm{T}}}} \approx p n_{e} r_{e_{\mathrm{T}}}^{2 \mathfrak{E}_{\mathrm{G}}^{\mathrm{2D}} 2 e_{0}^{3} U_{e}} \frac{\dot{\mathfrak{g}}^{1/2}}{m_{e} \dot{\mathfrak{g}}}.$$
 (16)

При $r_{e\rm T}$ »1 мм и $|U_e|$ » 44,5 В из (16) получаем, что амплитудное значение тока $i_{e\rm T}$ в электронном макроторе составит примерно 13,87 кА. Видно, что наибольшее значение электрического тока $i_{e\rm T}$ в образующемся вокруг сильноточного канала воздушного разряда ЛМ в зоне его изгиба высокопроводящем электронном кольце-торе достигает значительного уровня.

Что касается линейных скоростей протонов v_{pT} , ускоряемых индуцируемой ЭДС $U_e > U_p$ в элементарных протонных микроторах с главным радиусом $r_{T.Э}$ и ларморовскими радиусами r_p вращения этих частиц, то их значения определяются аналогично (14):

$$v_{pT} = \overset{\mathcal{R}}{\underset{e}{\varsigma}} \frac{2e_0 U_e}{m_e} \overset{\overset{o}{}}{\overset{:}{\overset{}}} \frac{2e_0 U_e}{\overset{o}{\overset{}}{\overset{:}{\overset{}}}} .$$
(17)

При $|U_p| * |U_e| * 44,5$ В из (17) находим, что ско-

рости протонов v_{рт} вдоль соответствующих элементарных микроторов могут достигать максимальных значений, равных примерно 9,23x10⁴ м/с. Становится ясным, что для линейных скоростей протонов, ускоряемых по кругу тора радиусом $r_{\rm T} \gg 20,2$ мм в зоне изгиба сильноточного разрядного канала ЛМ, выполняется соотношение $v_{eT} / v_{pT} \approx 42.8$. Как оказывается, это значение полностью соответствует численному значению соотношения ларморовских радиусов для протонов и электронов в сильном магнитном поле грозового разряда, приближенно равному, как было показано ранее, также $r_p / r_e \approx 42,8$. Движущимся вдоль своих полых микроторов по циклоидам протонам будет соответствовать круговая частота вращения $W_{pT} = v_{pT} / r_{T}$, численно равная ~ $4,57 \pm 0^6$ с⁻¹, и их период обращения примерно равен $T_{pT} = 2p / w_{pT} \gg 1,37$ мкс. В приближении равенства в исследуемой плазме ядра (плазмоиде) ШМ по модулю протекающих вдоль всех указанных элементарных микроторов в противоположных круговых направлениях электронного $q_{\rho T}$ »4,47 \star 0⁻⁴ Кл и протонного q_{nT} электрических зарядов максимальное значение тока протонов $i_{p_{\rm T}} \approx q_{p_{\rm T}} / T_{p_{\rm T}}$ может составлять лишь около 0,325 кА. Видно, что для соотношения суммарных электронного и протонного спирально-кольцевых импульсных токов в зоне изгиба канала разряда ЛМ выполняется равенство *i*_{ет} / *i*_{рт} » 42,7. Полученное соотношение между рассматриваемыми круговыми токами, охватывающими в зоне изгиба разрядного канала высокоионизированный столб плазмы ЛМ, позволяет нам сделать важный для дальнейшего понимания механизма образования природной ШМ за счет атмосферного электричества вывод о том, что преобладающим влиянием на протекающие электрофизические процессы в рассматриваемой локальной воздушной зоне вблизи канала разряда ЛМ будет обладать кольцевой импульсный электронный ток і рт. Практически влиянием кольцевого импульсного протонного тока і пт на процесс формирования в этой особой зоне внешнего вихревого радиального электрического поля и в последующем высокополяризованной водяной оболочки ШМ и соответственно внешних электрофизических атрибутов ШМ (свечения, потрескивания, шипения и др.) можно пренебрегать. Главное предназначение протонных колец с ларморовскими радиусами r_p и их элементарного спирально-кольцевого тока і лт. э заключается в электродинамическом удержании и тепловой защите от холодного воздуха высокотемпературных электронных колец с ларморовскими радиусами r_e и их элементарного спирально-кольцевого тока проводимости $i_{e_{T,2}}$. Именно такой научной позиции автора соответствует приведенная на рис. 2 упрощенная структура предлагаемой электродинамической модели ШМ, содержащей внутри центральное энергетическое ядро в виде высокопроводного макротора радиусом *r*_т со спирально-кольцевым электронным током проводимости і_{ет}, протекающим по данному тору-кольцу с круглым поперечным сечением радиусом $r_{\rho T}$, и внешнюю округлую высокополяризованную водяную оболочку радиусом $r_0 > (r_T + r_{eT})$ с множеством сферообразных слоев микродиполей-сфероидов влаги.

Численная оценка уровня напряженности Н_{ет} собственного азимутального импульсного магнитного поля от сформировавшегося вблизи изгиба разрядного канала ЛМ электронного тора со спирально-кольцевым током проводимости $i_{
m eT}$ по приближенному соотношению $H_{e\mathrm{T}}$ » $i_{e\mathrm{T}}$ / $2r_{\mathrm{T}}$ показывает, что при $i_{e_{\rm T}}$ » 13,87 кА и $r_{\rm T}$ » 20,2 мм данная напряженность равна 0,34х106 А/м (этой напряженности в воздухе соответствует магнитная индукция $B_{eT} \gg m_0 H_{eT} \gg 0,43$ Тл). Вблизи самого электронного тора с указанным главным радиусом $r_{\rm T}$ значения напряженности $H_{eT} \gg i_{eT} / (2p_{eT})$ при $r_{eT} \gg 1$ мм достигают уровня около 2,2x106 А/м, которым соответствуют значения магнитной индукции $B_{\rho T} \gg 2.8$ Тл. Эти расчетные данные дают основание заключить, что при ЛМ в зоне образования центрального энергетического ядра ШМ, содержащего электронный тор радиусом $r_{\rm T}$ » 20,2 мм со спирально-кольцевым током проводимости i_{ет} » 13,87 кА, генерируется сильное импульсное азимутальное магнитное поле, вызывающее появление в воздушной среде вокруг указанного высокотемпературного тора внешнего вихревого радиального электрического поля ШМ с напряженностью Е_{ет}. Возможный амплитудный уровень величины $E_{e_{\rm T}}$ в воздушной зоне вокруг энергетического ядра и потенциальной оболочки ШМ (при r₀ »2r_т »40,4 мм [1, 11]) может быть оценен по приближенному расчетному соотношению $E_{e_{\rm T}} \approx ({\rm m}_0 / {\rm e}_0)^{1/2} H_{e_{\rm T}}$, где ${\rm e}_0 = 8,854 {\rm k} 0^{-12}$

Ф/м – электрическая постоянная [7]. Поэтому при $H_{\rho \tau} > 0,34 \pm 0^6$ А/м численное значение напряженности вихревого радиального электрического поля в зоне ядра и оболочки ШМ окажется примерно равным 1,28×10⁸ В/м. При учете влияния микродиполей воды, присутствующих в огромном количестве в высокополяризованной водяной оболочке амплитудный уровень ШМ. напряженности $E_{e_{\rm T}} * ({\rm m}_0 / {\rm e}_0 {\rm e}_r)^{1/2} H_{e_{\rm T}}$, где ${\rm e}_r * 81$ — относительная диэлектрическая проницаемость воды [7], может снизиться до значений, равных 1,42×10⁷ В/м. Отсюда следует важный вывод о том, что в зоне, прилегающей к энергетическому ядру ШМ, в качестве которого выступает высокопроводный тор радиусом r_т со спирально-кольцевым электронным током і_{рт}, формируемый в воздушной атмосфере сильноточным разрядным каналом ЛМ в области его изгиба, генерируется сверхсильное вихревое радиальное электрическое поле [17]. Именно данное неоднородное по радиусу электрическое поле и будет согласно расчетным данным из [1, 4, 11] стягивать (транспортировать) из окружающей воздушной атмосферы в область энергетического ядра ШМ (в нашем случае электронного тора) дополнительно поляризованные им (этим полем) полярные молекулы и микросфероиды воды и тем самым автоматически участвовать в активном и быстром (за десятки микросекунд [11]) формировании высокополяризованной водяной оболочки ШМ. Необходимо отметить, что процесс формирования высокополяризованной водяной оболочки ШМ был достаточно подробно рассмотрен ранее в [1-3, 11].

Расчетная оценка времени «жизни» спирально-кольцевого электронного тока в ядре ШМ. Сформировавшийся вокруг разрядного канала ЛМ высокопроводный электронный тор со спирально-кольцевым током проводимости і_{ет} должен обладать таким собственным временем «жизни» t_т, которое превышает время развития и протекания в воздушной атмосфере ЛМ. В предложенной электродинамической модели ШМ именно время «жизни» t_т электронного тора с кольцевым током $i_{e\mathrm{T}}$ – этого своеобразного энергетического ядра ШМ - после исчезновения канала разряда ЛМ и будет определять время «жизни» t _{I.} ШМ в целом. В этой связи важным моментом в процессе формирования природной или искусственной ШМ является возможный электрофизический механизм отделения (отрыва) образовавшегося электронного тора со спирально-кольцевым током проводимости *i*_{ет} от породившего его сильноточного канала воздушного электрического разряда. Здесь возможны два варианта наступления подобного события:

первый — «пассивный», сводящийся к самопрекращению протекания в канале разрядного тока i_p и последующему автономному существованию в воздушной атмосфере образовавшегося электронного тора с кольцевым током i_{pT} ;

второй - «активный», базирующийся на известном в плазменной технике физическом принципе ускорения высокоионизированных плазменных образований-перемычек между двумя массивными токопроводами с противоположно направленными электрическими токами [9, 13]. Этот принцип сейчас широко используется в рельсотронах – высоковольтных электрофизических установках для ускорения низкотемпературной плазмы [18]. На мой взгляд, второй вариант обретения потенциальным ядром ШМ – электронным кольцом с током проводимости $i_{
m eT}$ своей автономности — является более реалистичным. Ведь электродинамическое усилие Fep, воздействующее, например, на изогнутую часть сильноточного плазменного канала разряда ЛМ длиной порядка 2pr_к (в нашем случае это будет участок канала длиной до 108 мм) и отбрасывающее ее совместно со связанным с нею высокопроводным электронным тором радиусом r_т в радиальном направлении от продольной оси разрядного канала, может при используемых нами АВП тока i_p грозового разряда $(I_{mp} \approx 200 \text{ кA}; t_{mp} \approx 10 \text{ мкс}; r_{\text{K}} \approx 17,2 \text{ мм}; H_p \approx 1,57 \pm 10^6 \text{ A/M})$ численно составлять до $F_{ep} \approx 2 \text{ pm}_0 H_p I_{mp} r_{\text{K}} \approx 4,26 \pm 10^4 \text{ H}$ (около 4,35x10³ кГ) [7]. Таких усилий согласно [19] достаточно для ликвидации случайно образовавшегося в воздушной атмосфере изгиба плазменного канала разряда ЛМ (например, из-за резкой неоднородности входящих в нее непроводящих частиц-ингредиентов или образования вакуумных полостей на пути развития газового разряда) и самоотрыва в этой зоне будущего энергетического ядра ШМ от приканальной области и его дальнейшего самостоятельного пребывания в насыщенной водяными парами воздушной атмосфере.

Численную оценку значения времени «жизни» t_T в воздушной атмосфере рассматриваемого высокотемпературного электронного макротора радиусом r_T с током проводимости i_{eT} , являющегося ядром ШМ, осуществим по следующему приближенному соотношению:

$$t_{\rm T} \approx \frac{3L_{\rm T}}{R_{\rm T}},\tag{18}$$

где $L_{\rm T} = \mathbf{m}_0 r_{\rm T\hat{\theta}} \ln \mathbf{\hat{e}}_{\mathbf{\hat{e}}}^{\mathbf{\hat{e}}} \frac{\mathbf{p} \mathbf{r}_{\rm T}}{\mathbf{r}_{e\rm T}} \frac{\mathbf{\ddot{o}}}{\mathbf{\sigma}} 2,45 \mathbf{\dot{\hat{u}}} [17], R_{\rm T} = \frac{2r_{\rm T}}{g_{\rm T} r_{e\rm T}^2} - ин-$

дуктивность и активное сопротивление электронного макротора с радиусами образующей $r_{\rm T}$, круглого поперечного сечения $r_{e\rm T}$ и удельной электропроводностью **g**_т его высокоионизированного материала соответственно.

Такой чисто электротехнический подход к определению времени «жизни» t т приводит при используемых параметрах макротора к тому, что для обеспечения его значений по (18) до нескольких секунд значение удельной электропроводности g_{τ} материала этого электронного тора-кольца должно быть равным $5,8 \times 10^{11}$ (Омжи)⁻¹, т.е. практически на четыре порядка превышать удельную электропроводность меди g_{Cu} при нормальных атмосферных условиях. Возможно ли такое вообще? Прежде чем ответить на этот непростой вопрос, во-первых, укажем, что согласно [12] для полностью ионизированной плазмы ее удельная электропроводность не зависит от концентрации электронов n_ρ в ней и определяется только электронной температурой T_e. Выбранная в проведенных расчетных оценках плотность электронов $n_{\rho} \gg 7 \pm 0^{21} \text{ м}^{-3}$ для высокоионизированной плазмы тора-кольца является характерным значением для сильноточных электрических разрядов в газовых средах, и поэтому по значению n_e вопросов возникать не должно. Что же касается электронной температуры Т_е в этой плазме, то уже только один полученный нами классическим расчетным путем уровень индуцированного напряжения $U_e \approx -44,5$ В от внешнего магнитного потока $\Phi_{\rm B}$ канала разряда ЛМ в зоне его изгиба в электронном торе радиусом $r_{\rm T} \approx 20,2$ мм указывает на то, что температура T_e в нем может достигать огромных значений. Ведь указанное значение U_р для ускоряемых в макроторе нерелятивистских электронов соответствует максимальной электронной температуре T_{em} » 44,5 эВ или 0,516 \pm 0⁶ К [13]. Во-вторых, здесь следует принять во внимание высказанную ранее мысль о возможности ускорения практически без столкновений рассматриваемых электронов с ларморовскими радиусами г_р внутри элементарных полых протонных торов с главными радиусами r_{т.Э} и ларморовскими радиусами $r_p >> r_e$. Так как на пути ускорения индуцируемым напряжением U_e этих электронов, обжатых снаружи протонными микрокольцами радиусом r_p, из-за наступившего в слабоионизированной плазме вокруг разрядного канала пространственного разделения электрических зарядов практически нет иных частиц, выполняющих роль центров их рассеяния, то образуемые подобными электронами высокопроводные элементарные торы-кольца с электронными токами $i_{e\mathrm{T},\Im}$ и главными радиусами r_{т.Э} могут иметь значения своей удельной электропроводности $g_{T} > > g_{Cu}$.

Подставив в (18) соответствующие геометрические и электрофизические параметры ($r_{\rm T}$ » 20,2 мм; $r_{eT} \gg 1$ мм; $g_T \gg 5.8 \pm 0^{11}$ (Омжи)⁻¹), получаем, что время «жизни» t_T спирально-кольцевого электронного тока i_{eT} , защищенного от окружающего холодного воздуха тепловыми экранами из все тех же полых протонных микроторов с ларморовскими радиусами r_p , в предлагаемом энергетическом ядре ШМ может составлять около 3,4 с.

Расчетная оценка радиальных токов смещения в поляризованной водяной оболочке ШМ. При распространении в ядре ШМ вдоль электронного макротора с радиусом r_т кольцевого импульсного тока электронной проводимости $i_{e\mathrm{T}}$ возникающая в окружающей его диэлектрической среде поперечная электромагнитная волна будет приводить к возникновению в плоскостях, перпендикулярных к направлению протекания кольцевого тока проводимости і_{рт}, соответствующих замкнутых токов смещения i_c. Направления протекания этих токов смещения при этом будут совпадать с направлениями векторов напряженности Е_{рт} сверхсильного вихревого радиального электрического поля, генерируемого кольцевым током проводимости і_{ет}. Для тока электрического смещения i_с, протекающего в высокополяризованной водяной оболочке ШМ, будет справедливо следующее приближенное расчетное соотношение:

$$i_{\rm c} > d_{\rm c} S_{\rm c},$$
 (19)

где d_c – плотность тока смещения; $S_c = 4pr_0^2$ – площадь наружной поверхности водяной оболочки ШМ (в принятом согласно [1, 11] приближении $r_0 \gg 2r_T$).

В соответствии с известными положениями классической электродинамики выражение для плотности тока электрического смещения в высо-кополяризованной водяной оболочке ШМ имеет следующий вид [7, 13]:

$$\mathsf{d}_{\mathsf{c}} = \mathsf{e}_0 \mathsf{e}_r \, \frac{\partial E_{e_{\mathrm{T}}}}{\partial t}.$$
 (20)

Для оценки скорости изменения во времени t напряженности E_{eT} вихревого радиального электрического поля в области водяной оболочки ШМ воспользуемся соотношением

$$\frac{\partial E_{e\mathrm{T}}}{\partial t} \underset{\mathbf{e}}{\overset{\mathrm{we}}{\mathbf{c}}} \frac{\mathsf{m}_{0}}{\mathsf{e}_{0}} \overset{\mathbf{e}}{\mathbf{e}_{r}} \frac{\partial H_{e\mathrm{T}}}{\dot{\mathbf{e}}} \frac{\partial H_{e\mathrm{T}}}{\partial t}.$$
(21)

В свою очередь, для производной $\partial H_{eT} / \partial t \gg dH_{eT} / dt$ запишем следующее выражение:

$$\frac{dH_{e\mathrm{T}}}{dt} \approx (2r_{\mathrm{T}})^{-1} \frac{di_{e\mathrm{T}}}{dt}.$$
 (22)

Что касается временной производной тока di_{eT} / dt для макротора с радиусом r_{T} , то ее значение будем определять из уравнения цепи для этого тора с током проводимости i_{eT} :

$$U_e \gg L_{\rm T} \frac{di_{e\rm T}}{dt} + R_{\rm T} i_{e\rm T}.$$
 (23)

Из (23) для принятых геометрических параметров тора ($r_{\rm T}$ » 20,2 мм; $r_{e{\rm T}}$ »1 мм) при $|U_e|$ » 44,5 В, $L_{\rm t}$ » 7,83
х10⁻⁸ Гн, $R_{\rm t}$ » 6,96
х10⁻⁸ Ом и $i_{e{\rm t}}$ » 13,87 кА следует, что максимальное значение для токовой производной diet / dt оказывается примерно равным 5,68×10⁸ А/с. Видно, что падением электрического напряжения на активном сопротивлении $R_{\rm T}$ образовавшегося снаружи разрядного канала ЛМ в зоне его изгиба электронного тора с током проводимости i_{ет} согласно (23) можно пренебречь. Тогда с учетом (21) и (22) для временной производной $\partial E_{e_{\rm T}}$ / ∂t в поляризованной водяной оболочке ШМ находим, что ее наибольшее значение может быть равным около 0,59x10¹² В/(мж). Согласно (20) такое значение $\partial E_{eT} / \partial t$ вызывает появление в водяной оболочке ШМ тока смещения с плотностью, приближенно равной d_c » 423,1 А/м². В результате из (19) при $r_0 \approx 40,4$ мм и найденном численном значении d_с получаем, что в предложенной электродинамической модели ШМ применительно к вызывающему ее в воздушной атмосфере сильноточному разряду ЛМ (I_{mp} » 200 кА; t_{mp} » 10 мкс; $r_{\rm K} > 17,2$ мм) ток смещения $i_{\rm C}$ в ее высокополяризованной водяной оболочке достигает уровня примерно в 8,7 А. Необходимо отметить, что такое сравнительно большое значение тока электрического смещения в соответствии с теорией электромагнитного поля Максвелла не будет выделять джоулева тепла в высокополяризованной водяной оболочке ШМ и окружающем его холодном воздухе. По-видимому, данный ток смещения і_с будет приводить к возбуждению валентных электронов атомов газообразных химических элементов, захваченных полярными молекулами воды из атмосферного воздуха по пути своего радиального движения к энергетическому ядру ШМ (тору с кольцевым током проводимости $i_{e\mathrm{T}}$) и присутствующих в водяной оболочке ШМ. Поэтому такой ток смещения *i*_c будет в состоянии создавать в оболочке ШМ электролюминесценцию [7, 13], обычно наблюдаемую (в том числе и очевидцами наблюдений природной ШМ [5, 10]) в виде холодного свечения атомов газов, присутствующих в воздухе.

Физическое моделирование плазмоида искусственной ШМ. Проверка возможности получения в лабораторных условиях низкоэнергетического плазмоида ШМ, подобного описанному выше, была осуществлена автором с помощью высоковольтной экспериментальной электроустановки, принципиальная электрическая схема которой приведена на рис. 3. Электроустановка, содержит конденсаторную батарею емкостью C_p » 840 мк Φ (шесть параллельно включенных конденсаторов ИМ2-5-140) на номинальное зарядное напряжение $U_3 \approx \pm 5 \text{ кB}$ и номинальную запасаемую электрическую энергию $W_p \gg 10,5$ кДж. Особенностью этой высоковольтной электроустановки, работающей в режиме генерирования изогнутого канала 2 дугового электрического разряда над горизонтальной плоской поверхностью технической воды, помещенной в изоляционную рабочую камеру (РК), является то, что она содержит специальную двухэлектродную систему (ДЭС), одним из электродов которой является вертикально расположенный сплошной потенциальный графитовый цилиндр 1, а другим – вода 3 с помещенным в ней плоским заземленным алюминиевым электродом 5 (см. рис. 3). Графитовый электрод 1 диаметром 7 мм отделен от воды изоляционной трубкой с толщиной стенки 1 мм, выполненной, как и в [20], из кварцевого стекла. В ДЭС графитовый электрод 1, кварцевая трубка которого выступала примерно на 5 мм над поверхностью воды, с помощью изолированного токопровода 6 был подсоединен к многозазорному воздушному коммутатору F типа M3K-100 (с двумя закороченными и двумя рабочими зазорами длиной 2 мм каждый между стальными цилиндрическими электродами с полусферическими рабочими поверхностями) [21], управляемому с помощью генератора высоковольтных поджигающих импульсов (ГВПИ) 8 с разделительной емкостью на выходе [22], подающего на средний стальной электрод коммутатора F запускающие импульсы напряжения амплитудой до ±100 кВ микросекундного временного диапазона. Высота h столба воды в РК между ее наружной поверхностью и плоскостью заземленного посредством изолированного токопровода 6 электрода 5 могла изменяться от 10 до 190 мм. ДЭС электроустановки была выполнена с возможностью размещения на плоской поверхности графитового электрода 1 нескольких капель воды [20]. Измерение в разрядной цепи экспериментальной электроустановки АВП импульсного тока после заряда конденсаторов до требуемого зарядного напряжения U_3 , срабатывания от ГВПИ коммутатора F и электрического пробоя изоляционного промежутка в ДЭС проводилось с помощью метрологически поверенного коаксиального шунта 9 [22], вкюченного в заземленную часть разрядной цепи высоковольтной электроустановки, и запоминающего цифрового осциллографа (ЦО) типа Tektronix TDS 1012.

На рис. 4 показаны начальная и финальная стадии образования в воздушной атмосфере прямо над ДЭС высоковольтной экспериментальной электроустановки ярко светящегося сферического низкоэнергетического плазмоида искусственной ШМ. Зарядное напряжение отрицательной полярности конденсаторной батареи при этом составляло $U_3 > -4,5$ кВ ($W_p > 9,1$ кДж). Данный плазмоид искусственной ШМ, диаметр которого достигал до $D_n \approx 0.2$ м (при $h \approx 190$ мм, был зафиксирован с помощью цифровой камеры типа Canon SX 200JS. Многократно проведенные опыты по получению на описанной электроустановке подобных искусственных плазмоидов свидетельствуют о том, что при изменении уровня зарядного напряжения U₂ для примененных импульсных конденсаторов от 2 до 5 кВ время «жизни» надежно воспроизводимых на ней плазмоидов не превышало t , » 0,5 с. Скорость их подъема над ДЭС и плоскостью воды составляла около 0,8 м/с. Проведенные эксперименты подтвердили указанную в [20] зависимость внешней формы и диаметра D_n образуемых плазмоидов от

Рис. 4. Начальная (*a*) и финальная (*b*) стадии образования ярко светящегося сферического низкоэнергетического плазмоида искусственной ШМ в воздушной атмосфере над специальной ДЭС изоляционной РК из оргстекла с технической водой объемом до 10 л высоковольтной моделирующей конденсаторной электроустановки ($U_3 \approx 4.5$ кВ; $W_p \gg 9.1$ кДж; $I_{mp} \gg 3.8$ кА; $D_p \gg 0.2$ м; t_т $\gg 0.5$ с)

знака полярности подаваемого на графитовый электрод ДЭС потенциала. Только отрицательная полярность зарядного напряжения U_3 конденсаторной батареи электроустановки обеспечивает получение округлых плазмоидов с временем их «жизни» порядка 0,5 с.

При подаче на графитовый электрод ДЭС электрического потенциала положительной полярности резко уменьшаются как численные значения D_n , так и t_т. При этом округлость поднимающихся над ДЭС электроустановки плазменно-кластерных образований нарушается. Эти данные могут указывать на заметное влияние концентрации n_e свободных электронов в зоне изгиба канала дугового электрического разряда на процесс формирования энергетического ядра и оболочки получаемых в проведенных опытах искусственных плазменных образований. Эта выявленная экспериментальным путем электрофизическая особенность хорошо коррелирует с научными положениями, лежащими в основе предложенной автором электродинамической модели ШМ. Ведь для этой модели ШМ низкая плотность n_ρ электронов в плазме вне разрядного канала не способствует формированию в зоне его изгиба мощного электронного высокопроводного тора радиусом $r_{\rm T}$ с будущим кольцевым током проводимости іет, способного стать энергетическим ядром ШМ.

Из приведенной на рис. 5 осциллограммы импульсного затухающего тока в разрядной цепи примененной в опытах электроустановки видно, что в начале процесса разряда заряженной до напряжения $U_3 \gg -4,5$ кВ емкости C_p конденсаторной бата-

Рис. 5. Осциллограмма импульсного тока в разрядной цепи высоковольтной конденсаторной электроустановки, моделирующей над специальной ДЭС изоляционной РК с технической водой сферические низкоэнергетические плазмоиды искусственной ШМ (получена с учетом влияния затухающих импульсов тока от генератора ГВПИ в режиме срабатывания с его помощью многозазорного воздушного коммутатора МЗК-100 и разряда на ДЭС высоковольтной емкости; $U_3 \approx 4,5$ кВ; $I_{mp} \approx 3,8$ кА (масштаб по вертикали – 1 кА/клетка)

реи на участке длительностью до 0,5 мкс амплитуда I_{mp} импульсного тока, протекающего в ДЭС, за счет наложенных колебаний тока от генератора ГВПИ принимает значения, достигающие 3,8 кА. При t > 5 мкс значение становится равным 100 А. В последующем амплитуда I_{mp} разрядного тока снижается и при t > 100 мс не превышает 10 А. Поэтому формирование автономного сферического низкоэнергетического плазмоида в воздушной атмосфере в зоне изгиба канала дугового электрического разряда завершается при амплитудах разрядного тока в цепи конденсаторной батареи в единицы ампер.

Выводы. 1. В зоне изгиба канала разряда ЛМ или дугового разряда с током КЗ из-за возникновения возможности индукционного наведения в проводящих электронных и протонных микрокольцах продольных ЭДС происходит образование элементарных электронных и протонных микроторов со спирально-кольцевыми импульсными токами проводимости, направленными в противоположные стороны. Циклоидальные импульсные электронные токи проводимости в данных торах в десятки раз превышают циклоидальные импульсные протонные токи проводимости, протекающие в соответствующих торах с диаметром $2r_p >> 2r_e$, и выполняют основную электрофизическую роль в формировании тороидального энергетического ядра ШМ.

2. Суммарный спирально-кольцевой импульсный электронный ток проводимости высокотемпературного тороидального энергетического ядра ШМ генерирует вокруг ядра ШМ сильное импульсное азимутальное магнитное поле, которое, в свою очередь, вызывает появление вокруг сформировавшегося ядра-тора ШМ сверхсильного вихревого радиального электрического поля. Данное сверхсильное вихревое радиальное электрическое поле из полярных молекул и микросфероидов воды воздушной атмосферы формирует вокруг тороидального энергетического ядра ШМ высокополяризованную водяную оболочку.

3. В предложенной модели ШМ время «жизни» спирально-кольцевого электронного тока проводимости *i*_{eт} высокотемпературного тороидального энергетического ядра ШМ и ШМ в целом может составлять до нескольких секунд.

4. Расчетная оценка тока электрического смещения в высокополяризованной водяной оболочке ШМ, создаваемой в зоне изгиба разрядного канала ЛМ, свидетельствует о том, что в соответствии с предложенной электродинамической моделью ШМ он может составлять до 9 А и вызывать электролюминесценцию (холодное свечение) в атомах газообразных элементов. 5. Выполненные на высоковольтной электроустановке, генерирующей изогнутый канал дугового электрического разряда в специальной ДЭС с графитовым электродом и технической водой, эксперименты подтвердили возможность получения в лабораторных условиях ярко светящихся сферических низкоэнергетических плазмоидов искусственной ШМ. Ряд выявленных особенностей при используемом формировании в лаборатории искусственных плазмоидов указывает на возможную работоспособность предложенной электродинамической модели ШМ.

СПИСОК ЛИТЕРАТУРЫ

1. Баранов М.И. Электрофизическая природа шаровой молнии. – Электричество, 2009, № 9.

2. Баранов М.И. Электрическая корона в микродипольной модели шаровой молнии. – Электричество, 2010, № 1.

3. Баранов М.И. Расчетная оценка температуры в микродипольной модели шаровой молнии. – Электричество, 2010, № 6.

4. Щерба А.А., Подольцев А.Д., Кучерявая И.Н. и др. Электрический транспорт полярных молекул воды в неоднородном электрическом поле полимерной изоляции высоковольтных кабелей. — Технічна електродинаміка (Киев), 2010, № 5.

5. Смирнов Б.М. Физика шаровой молнии. — Успехи физических наук, 1990, т. 160.

6. **Кужекин И.П., Ларионов В.П., Прохоров Е.Н.** Молния и молниезащита. – М.: Знак, 2003.

7. **Яворский Б.М., Детлаф А.А.** Справочник по физике. – М.: Наука, 1990.

8. Духин С.С., Дерягин Б.В. Электрофорез. – М.: Наука, 1976.

9. Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. – М.: Атомиздат, 1977.

10. Стаханов И.П. О физической природе шаровой молнии. – М.: Научный мир, 1996.

11. **Никитин А.И.** Образование шаровой молнии при развитии линейной молнии. — Электричество, 2000, № 3.

12. Бортник И.М., Белогловский А.А., Верещагин И.П. и др. Электрофизические основы техники высоких напряжений/Под общ. ред. И.П. Верещагина.— М.: Издат. дом МЭИ, 2010.

13. **Кузьмичев В.Е.** Законы и формулы физики. – Киев: Наукова думка, 1989.

14. Баранов М.И. Приближенный расчет максимальной температуры плазмы в сильноточном канале искрового разряда высоковольтного воздушного коммутатора атмосферного давления. — Технічна електродинаміка (Киев), 2010, № 5.

15. Лозанский Э.Д., Фирсов О.Б. Теория искры. – М.: Атомиздат, 1975.

16. **Баранов М.И.** Электрофизический микромеханизм явления электромагнитной индукции в неподвижном металлическом проводнике. – Электричество, 2012, № 1.

17. **Кнопфель Г.** Сверхсильные импульсные магнитные поля. – М.: Мир, 1972.

18. **Месяц Г.А.** Импульсная энергетика и электроника. – М.: Наука, 2004.

19. Райзер Ю.П. Физика газового разряда. – М.: Наука, 1987.

20. Егоров А.И., Степанов С.И., Шабанов Г.Д. Демонстрация шаровой молнии в лаборатории. — Успехи физических наук, 2004, т. 174, № 1.

21. Баранов М.И., Бочаров В.А., Зябко Ю.П. и др. Высоковольтные сильноточные искровые коммутаторы для генераторов импульсных напряжений и токов. — Технічна електродинаміка (Киев), 2003, № 3.

22. Баранов М.И., Колиушко Г.М., Кравченко В.И. и др. Генератор тока искусственной молнии для натурных испытаний технических объектов. – Приборы и техника эксперимента, 2008, № 3.

[09.01.13]

Автор: Баранов Михаил Иванович окончил в 1972 г. инженерно-физический факультет Харьковского политехнического института (ХПИ) по специальности «Инженерная электрофизика». В 1999 г. защитил докторскую диссертацию «Переходные процессы при воздействии больших импульсных токов и сильных импульсных магнитных полей на проводящие объекты» в Национальном техническом университете (НТУ) «ХПИ». Заведующий отделом электромагнитных испытаний в Научно-исследовательском и проектно-конструкторском институте «Молния» НТУ «ХПИ», профессор НТУ «ХПИ» по кафедре инженерной электрофизики.

*

*

К СВЕДЕНИЮ АВТОРОВ и ЧИТАТЕЛЕЙ!

Каждый автор имеет право бесплатно получить 1 экз. журнала с его статьей. Экземпляры номеров журнала «Электричество» за последние годы можно приобрести в редакции журнала: 111250 Москва, Красноказарменная ул., 14 (МЭИ, каф. ТОЭ, первый этаж, ком. 3-111, тел./факс (495)362-7485).