Вектор Пойнтинга и новая теория трансформатора. Ч. 1

ШАКИРОВ М.А.

Представлена новая формула (модель) принципа действия силового трансформатора, вытекающая из характера распределения вектора Пойнтинга в промежутке между его первичной и вторичной обмотками. На базе этого принципа получены развернутые 4T-образные схемы замещения и векторные диаграммы с локализациями на них всех магнитных потоков в окне и стали трансформатора. Подтверждена достоверность возникновения как при установившемся, так и при внезапном коротком замыкании одной из обмоток одновременно в различных частях магнитопровода сверх- и антипотоков. Делается вывод о необходимости пересмотра теории трансформатора. Это утверждение предопределено работами многих авторов, выступавших с критикой его T- и П-образных схем замещения. В данной статье показано, что решение проблемы возможно только при более глубоком понимании физических основ работы трансформатора.

Ключевые слова: трансформатор, первичная и вторичная обмотки, магнитный поток, векторная диаграмма, схема замещения, короткое замыкание, напряженность магнитного поля, напряженность электрического поля

Силовые трансформаторы предназначены для передачи электрической мощности в сети с повышением или понижением напряжения. Из этого следует, что этот установившийся рабочий процесс должен быть в центре описания их моделей принципа действия. Вместо этого, начиная с Чарлза Штейнмица [1], т.е. с 1897 г., рассмотрение двухобмоточного трансформатора предваряется понятиями о потоке $\stackrel{\&}{\mathsf{F}}_0$ холостого хода (х.х.) и создающей его намагничивающей МДС х.х. $(w_1 I_0)$, после чего выссказывается идея, что рабочий режим устанавливается в результате «противоборства» первичной и вторичной обмоток ради сохранения неизменной МДС намагничивания х.х. $w_1 I_0 = w_1 I_1 - w_2 I_2$, призванной сохранить постоянным поток в магнитопроводе равным F_0 (см. Приложение 1). Ч. Штейнмиц является, скорее всего, и автором Т-образной схемы замещения трансформатора, а также таких понятий, как намагничивающая ветвь, индуктивности рассеяния первичной L_{s1} и вторичной L_{s2} обмоток, связанных, якобы, с намагничиванием магнитопровода и раздельным существованием потоков рассеяния обмоток.

Первый протест против подобного «физического» смысла L_{s1} и L_{s2} встречается в работе Бояджана 1925 г. [2], показавшего также бессмысленность самих понятий о потоках рассеяния отдельных обмоток, что подтверждено в работе Марквардта 1938 г. [3], а также опытными данными [4]. Недостатки Т-образной схемы способствовали развитию интереса к другой, также полуэвристической, П-образной (или р-образной) схеме замещения с двумя поперечными ветвями намагничивания и одной неделимой индуктивностью рассеяния между ними, разработанной Шерри в 1949 г. с использованием принципа дуальности между магнитными и электрическими цепями [5]. Несмотря на формальный характер П-образной схемы, она дает более точные результаты в расчетах переходных процессов при сильном насыщении участков магнитопровода [6-10]. Однако в режимах от х.х. до рабочих Т- и П-образные схемные модели идентичны, т.е. приводят практически к одинаковым результатам. Тем более что в этих случаях они легко могут быть получены одна из другой в результате преобразования треугольника в звезду и наоборот или путем перехода от Z-параметров 2'2-полюсника к его *Y*-параметрам, как показано в [8, с. 71]. Поэтому введение П-образных схем замещения не вызвало пересмотра существующей модели работы трансформатора, ставящей заслон здравой идее раскрыть принцип действия на основе рассмотрения идеализированного трансформатора (т.е. трансформатора с совершенным магнитопроводом при $m_{rT} = 4$ и проводимостью $g_{ct} = 0$) как устройства с наилучшими (предельными) характеристиками, к которым должны приближаться свойства реального трансформатора. В магнитопроводе такого трансформатора напряженность магнитного поля равна нулю, и сразу отметаются бытующее до сих пор (см. Приложение 2) измышление о передаче энергии от первичной обмотки во вторичную через железо магнитопровода, а также согласующееся с этим представлением утверждение, высказанное, в частности, в [11, с. 165], будто бы «энергия магнитного поля концентрируется в основном в магнитопроводе и небольшая часть - в пространстве, занимаемом полем рассеяния». В рамках традиционной

модели работа идеализированного трансформатора необъяснима, поскольку исчезает важная для этой модели намагничивающая МДС х.х. ($w_1 I_0 = 0$), обусловливающая общий поток, и приходится принять $\mathcal{F}_0 \otimes 0$, что абсурдно!

Традиционная модель принципа действия заводит в тупик каждого, кто пытается на ее основе выявить вектор Пойнтинга, отвечающий за движение энергии в трансформаторе.

Примечание 1. Это подтверждается, например, тупиком, в котором оказался автор [12, с. 176-180] при попытке получить картину «движения поля в трансформаторе» на основе идеи об об-«основном», потоке в трансформаторе щем, (1962 г.). Поскольку представление об «основном» потоке имеет смысл только для катушки, то оно и привело его к рассмотрению «катушки с обмотками на обоих сердечниках», поэтому в параграфе, посвященном трансформатору, он не привел ни одной картины «движения поля в трансформаторе под нагрузкой». Сумбур усугублен еще и допущением об «отсутствии потока рассеяния», играющего ключевую роль в передаче мощности от обмотки к обмотке. Более реалистичный механизм передачи мощности представлен Я. Туровским (1974 г.), содержащий, однако, два не согласующихся между собой утверждения: «энергия поступает в обмотки ... через их внешние поверхности» и «энергия передается посредством воздушного зазора, заключенного между обмотками» [13, с. 142-143]. Раскритиковав [13], автор [14] нарисовал и вовсе экзотическую картину линий потока мощности в толще обмоток, якобы «имеющих в канале рассеяния вид спиралей с несколькими оборотами», для чего при определении вектора Пойнтинга вместо тангенциальной напряженности электрического поля использовал «радиальную напряженность» между обмотками. Ошибка состоит в том, что при отсутствии заземления хотя бы одной из двух обмоток радиальной составляющей напряженности электрического поля в зазоре между обмотками попросту не будет!

Налицо явная запущенность физических основ теории трансформатора. В таком же состоянии находятся и векторные диаграммы (графические модели), и система уравнений (математическая модель), являющиеся наряду со схемными Т- и П-моделями прямым отображением принятой модели принципа действия. Поскольку перечисленные модели вытекают одна из другой, то несогласие с одной из них касается всех других и означает критику теории в целом, включая задекларированный в ней принцип действия.

Из сказанного следует, что на повестке дня стоит вопрос о коренном пересмотре теории трансформаторов, написании ее с «белого листа» на основе новых понятий и парадигм, не укладывающихся в рамки традиционных представлений. В данной работе эта проблема разрешается методом step by step, вначале для простейших случаев, т.е. поэтапным изложением новой теории с целью обеспечения доступности понимания процедуры построения схем замещения на основе реальных потоков (т.е. потоков, которые могут быть измерены с помощью специальных витков), местоположения этих потоков на векторных диаграммах, а также особенностей их поведения в динамических процессах. При этом одновременно решается вопрос, как сегодня излагать новую теорию студентам, держащим в руках учебники с неверными представлениями о физических процессах в трансформаторах.

Естественно, корректное и убедительное решение этой проблемы возможно только для трансформатора со строгим математическим описанием его геометрии. Поэтому здесь рассматриваются однофазные двухобмоточные броневые трансформаторы с концентрическими броневыми ярмами (рис. 1) при обычно принимаемом допущении, что в пределах обмоток и канала между ними магнитные линии параллельны оси стержня. Для получения базовых аналитических соотношений рассматривается случай, когда высота обмоток $h_{ob} = h_{oKH} = h$, где h_{oKH} — высота окна (рис. 1,*a*). Введены понятия: U_{up}^{M} — магнитный потенциал части верхнего стыкового ярма между обмотками; $\overset{\&}{U}_{\mathrm{down}}^{\mathrm{M}}$ – магнитный потенциал нижнего стыкового ярма.

Магнитные потоки в трансформаторе. Для объяснения принципа действия трансформатора и формирования его уравнений, как правило, используют условные О-модели. Одна из них с виртуальными (вымышленными) магнитными потоками, заимствованная из учебника [15, с. 109] и повторяющая аналогичную модель из зарубежного учебника [16, с. 15], приведена на рис. 2,*а*. Ей противостоит О-модель (рис. 2, δ) с реальными магнитными потоками, смысл которых иллюстрируется на рис. 1, δ .

Магнитные потоки в магнитопроводе: $\overset{\&}{F_1} \circ \overset{\&}{F_cr}$ – в стержне; $\overset{\&}{F_2} \circ \overset{\&}{F_{60K}}$ – в боковом ярме; $\overset{\&}{F_g} -$ в стыковом ярме со стороны внутренней обмотки; $\overset{\&}{F_g} -$ в стыковом ярме со стороны внешней обмотки.

Рис. 1. Броневой трансформатор с цилиндрическим боковым ярмом

Магнитные потоки в кольцевых каналах окна трансформатора: F_{dl} – в канале шириной d_1 между стержнем и внутренней обмоткой; F_{d2} – в канале шириной d_2 между боковым ярмом и внешней обмоткой; F_d – в канале шириной d между обмотками; F_a – в толще внутренней обмотки шириной *a*; F_b – в толще внешней обмотки шириной *b*. Магнитные потоки между трансформатором и баком: F_a^{OR} , F_b^{OR} – между баком и соответствую $\stackrel{\&}{F}_{D}$ — в канале между цилиндрическим баком и боковым ярмом.

Обозначим магнитные сопротивления кольцевых каналов в окне:

$$R_{dl}^{M} = \frac{h}{m_{0} s_{dl}}; R_{d2}^{M} = \frac{h}{m_{0} s_{d2}}; R_{d}^{M} = \frac{h}{m_{0} s_{12}};$$
$$R_{a}^{M} = \frac{h}{m_{0} s_{a}}; R_{b}^{M} = \frac{h}{m_{0} s_{b}},$$
(1)

где нижний индекс в обозначении площади s_k совпадает с обозначением ширины соответствующего кольцевого канала и его потока (рис. 1, δ):

$$s_{dl} = p(D_{cT} + d_1)d_1; \qquad (2)$$

Рис. 2. Магнитные потоки, используемые в традиционной (а) и новой (б) теории трансформатора

$$s_a = s_1 = p D_a a; \tag{3}$$

$$s_{d} = s_{12} = p D_{12} a_{12};$$
 (4)

$$s_b = s_2 = pD_b b; \tag{5}$$

$$s_{d2} = p(D_b + b + d_2)d_2.$$
 (6)

Очевидны следующие связи между магнитными потоками:

$$\overset{\&}{\mathsf{F}}_{1} + \overset{\&}{\mathsf{F}}_{dl} = \overset{\&}{\mathsf{F}}_{a} + (\overset{\&}{\mathsf{F}}_{\mathfrak{R}}^{a} + \overset{\&}{\mathsf{F}}_{a}^{\mathrm{OS}});$$
(7)

$$\overset{\&}{\mathsf{F}}_{\mathsf{d}} = (\overset{\&}{\mathsf{F}}_{\mathfrak{R}}^{a} + \overset{\&}{\mathsf{F}}_{\mathfrak{a}}^{\mathrm{OS}}) - (\overset{\&}{\mathsf{F}}_{\mathfrak{R}}^{b} + \overset{\&}{\mathsf{F}}_{\mathfrak{b}}^{\mathrm{OS}});$$
(8)

$$\stackrel{\alpha}{=}_{2} + \stackrel{\alpha}{\mathsf{F}}_{d2} + \stackrel{\alpha}{\mathsf{F}}_{\mathsf{D}} = (\stackrel{\alpha}{\mathsf{F}}_{\mathfrak{g}}^{b} + \stackrel{\alpha}{\mathsf{F}}_{b}^{\mathsf{OS}}) - \stackrel{\alpha}{\mathsf{F}}_{b}.$$
(9)

Через непосредственное использование этих соотношений можно приблизиться к идее – создать развернутую электрическую схему замещения в том смысле, что в ней наряду с электрическими величинами (U_1 , U_2 , I_1 , I_2) будут отображаться (могут быть увидены) все перечисленные магнитные потоки. Реализацию идеи представим отдельными этапами, начиная с построения схемы замещения идеализированного трансформатора с тонкими обпри значении ИХ сопротивлений мотками $R_1, R_2 \otimes 0$. На втором этапе рассмотрим, как влияет на структуру схемы учет конечной ширины обмоток (а и b) идеализированного трансформатора. И

лишь на заключительном этапе дополним схему элементами, отвечающими за потери в обмотках и стали, а также за потоки $F_{dl}^{\&,\&}, F_{d2}^{\&,\&}, F_{a}^{og}, F_{b}^{og}, F_{D}^{,}$ возникающие при конечной магнитной проницаемости соответствующих участков магнитопровода или вследствие насыщения стали. Таким образом, каждый последующий этап будет сопровождаться наращиванием схемы замещения. Поскольку при величин будет изменяться, в формулах промежуточных этапов вместо знака обычного равенства используется стрелка (®), означающая, что на следующем шаге эти величины и соотношения для них будут уточняться. Для определенности далее положим, что первичной является внутренняя обмотка трансформатора.

Передача энергии в идеализированном трансформаторе с тонкими обмотками. Поскольку в идеализированном трансформаторе $m_{cT} = 4$, все потоки в нем, примыкающие непосредственно к стали (рис. 1,6 и 2,6), равны нулю, т.е.

$$\overset{\&}{\mathsf{F}}_{\mathsf{dl}}, \overset{\&}{\mathsf{F}}_{\mathsf{d2}}, \overset{\&}{\mathsf{F}}_{\mathsf{D}}, \overset{\&}{\mathsf{F}}_{a}^{\mathsf{OR}}, \overset{\&}{\mathsf{F}}_{b}^{\mathsf{OR}} \otimes 0.$$
(10)

В случае бесконечно тонких обмоток (a = 0, b = 0) потоки в толще обмоток

этап

$$\mathbf{F}_{a}, \mathbf{F}_{b} \otimes \mathbf{0}. \tag{11}$$

 $a \qquad \begin{array}{c} \varphi_{H} & \varphi_{D} \\ \dot{U}_{1} & Jx_{\delta}I_{1} & \dot{U}_{2}' \\ \theta & \varphi_{H} \\ \varphi_{1} \\ \dot{\Phi}_{1} \\ \dot{\Phi}_{2} \\ c) & \dot{\Phi}_{2} \end{array} \dot{\Phi}_{\delta}$

б)

Рис. 3. Магнитные потоки в идеализированном трансформаторе с тонкими обмотками (a), схема замещения с идеальным трансформатором (δ), схема замещения после приведения вторичной обмотки к первичной (s), векторная диаграмма с треугольником магнитных потоков (z)

Таким образом, останутся только три потока, как показано на рис. 3,a, при этом выражения (7)-(9) упрощаются и принимают вид:

$$\begin{array}{c} \overline{\mathsf{F}}_{\mathsf{d}} \circ \overline{\mathsf{F}}_{\mathsf{g}}^{a} - \overline{\mathsf{F}}_{\mathsf{g}}^{b}; \\ \& & \& & \& \\ \& & \& & \& \\ \end{array}$$
(13)

$$\mathbf{\tilde{F}}_{2} \circ \mathbf{\tilde{F}}_{\mathrm{fok}} \otimes \mathbf{\tilde{F}}_{g}^{b}; \tag{14}$$

можно также написать

$$\overset{\&}{\mathsf{F}}_{1} \overset{\&}{\mathsf{R}} \overset{\&}{\mathsf{F}}_{\mathsf{d}} + \overset{\&}{\mathsf{F}}_{\mathfrak{g}}^{b}.$$
 (15)

Новый принцип действия трансформатора включает следующие положения.

1. Пара обмоток с токами образует единую систему, предназначенную для создания магнитного напряжения

$$\overset{\&}{U}{}^{M} = \overset{\&}{U}{}^{M}_{up} - \overset{\&}{U}{}^{M}_{down}$$
(18)

в окне между верхним и нижним стыковыми ярмами в межобмоточном пространстве

$${\overset{\&}{}_{U}}^{M} \otimes {\overset{\&}{w_{1}}}^{I}_{I_{1}} = {\overset{\&}{w_{2}}}^{I}_{I_{2}}, \qquad (17)$$

и общего, неделимого между обмотками, магнитного потока в окне

$$\overset{\&}{\mathsf{F}}_{\mathsf{d}} = \frac{\overset{\&}{U}{}^{\mathsf{M}}}{R_{\mathsf{d}}^{\mathsf{M}}} \overset{\&}{\mathsf{R}} \frac{\overset{\&}{w_{1}I_{1}}}{R_{\mathsf{d}}^{\mathsf{M}}} = \frac{\overset{\&}{L_{\mathsf{d}}I_{1}}}{w_{1}}$$

$$\overset{\&}{\mathsf{F}}_{\mathsf{d}} \overset{\&}{\mathsf{R}} \frac{\frac{w_{2}I_{2}}{R_{\mathsf{d}}^{\mathsf{M}}}}{R_{\mathsf{d}}^{\mathsf{M}}} = \frac{w_{2}L_{\mathsf{d}}I_{2}}{w_{1}^{2}}$$

или

где L_{d} — внутренняя индуктивность трансформатора;

$$L_{\rm d} = \frac{w_1^2}{R_{\rm d}^{\rm M}} = w_1^2 \frac{m_0 s_{\rm d}}{h_{\rm oKH}}.$$
 (19)

Равнозначимость обмоток проявляется в том, &что подобно двум соотношениям для потока F_d в (18) напряженность магнитного поля в окне между обмотками также можно выразить двумя равноценными выражениями как в зависимости от тока $I_1^{\&}$, &

так и от тока $I_2^{\&}$:

$$\overset{\&}{H}_{d} = \frac{\overset{\&}{U}{}^{M}}{h_{oKH}} \otimes \frac{\overset{\&}{w_{1}I_{1}}}{h_{oKH}}$$
или $\overset{\&}{H}_{d} = \otimes \frac{\overset{\&}{w_{2}I_{2}}}{h_{oKH}}.$ (20)

& 2. Поток в стержне F_1 определяется не током намагничивания, а электрическим напряжением намагничивания

$$\overset{\&}{U_1} = j w w_1 \mathsf{F}_1, \tag{21}$$

что с учетом (12) позволяет записать следующее выражение для левого потока в стыковом ярме (рис. 3,*a*):

$$\sum_{n=1}^{\infty} \frac{a}{j} \otimes \frac{U_1}{j W w_1}.$$
 (22)

Аналогично для потока справа в стыковом ярме

$$\overset{\&}{=} \overset{b}{}_{\mathfrak{R}} \otimes \frac{\widetilde{U}_2}{j w w_2}. \tag{23}$$

3. Из закона электромагнитной индукции вытекает, что кроме магнитного поля в окне между обмотками возникает электрическое поле напряженмостью $\stackrel{\&}{E}(r)$ (рис. 1, δ), которая вблизи внутренней обмотки равна

$$\overset{\&}{E}_{a} = \overset{\&}{E} \left| \begin{array}{c} & \overset{\&}{pwF_{1}} \\ r = \frac{D_{a}}{2} \end{array} \overset{\&}{pwF_{1}} \right|_{r = \frac{D_{a}}{2}} \overset{\&}{p} \frac{U_{1} / w_{1}}{pD_{a}}, \quad (24a)$$

а с учетом (15), первого соотношения из (18) и выражения (23)

$$\overset{\&}{E}_{a} = \frac{j w (\overset{\&}{\mathsf{F}}_{d} + \overset{\&}{\mathsf{F}}_{g}^{b})}{\mathsf{p} D_{a}} \bigotimes \frac{j w (L_{d} I_{1} / w_{1} + \overset{\&}{U}_{2} / j w w_{2})}{\overset{\&}{\mathsf{p}} D_{a}} = \frac{j w L_{d} I_{1} / w_{1} + \overset{\&}{U}_{2} / w_{2})}{\mathsf{p} D_{a}}.$$
(246)

4. Пространственно векторы $\overset{\&}{H}_{d}$ и $\overset{\&}{E}_{a}$ сдвинуты на 90°, и для вектора Пойнтинга, направленного от поверхности внутренней обмотки в сторону внешней обмотки, можем написать два выражения – одно с учетом (24а) и первой формулы из (20):

$$\overset{\&}{\mathsf{P}}_{a} = \overset{\&}{E}_{a} \overset{*}{H}_{d} \overset{\&}{\mathbb{B}} \frac{\overset{\&}{U_{1}} / w_{1}}{\mathsf{p}D_{a}} \frac{w_{1}I_{1}}{h_{\text{OKH}}} = \frac{\overset{\&}{U_{1}}I_{1}}{h_{\text{OKH}}\mathsf{p}D_{a}} = \frac{\overset{\&}{S_{1}}}{h_{\text{OKH}}\mathsf{p}D_{a}},$$
(25a)

другое с учетом (24б), второй формулы из (20) и

вытекающей из (17) связи
$$(w_2 / w_1)^{\tilde{I}}_2 = \tilde{I}_1$$
, т.е.
 $\overset{\&}{P}_a = \overset{\&}{E}_a \overset{*}{H}_d \circledast \frac{jwL_d \frac{I_1}{w_1} + \frac{U_2}{w_2} \frac{w_2 I_2}{h_{OKH}}}{pD_a} = \frac{jwL_d I_1^{\tilde{I}} I_1 + \frac{U_2}{U_2} I_2}{h_{OKH} pD_a} = \frac{jwL_d I_1^{\tilde{I}} 2 + \overset{\&}{S}_2}{h_{OKH} pD_a}.$ (256)

Получаемая при этом полная мощность, исходящая с поверхности внутренней обмотки в коридор между обмотками, согласно (25а) равна

$$\overset{\&}{S}_{a} = \overset{\&}{\mathsf{P}}_{a} h_{\text{OKH}} \mathsf{p} D_{a} \overset{\&}{\mathbb{R}} \overset{*}{U_{1}} \overset{*}{I_{1}} \overset{\&}{} \overset{\&}{S_{1}}, \qquad (26a)$$

а согласно (25б)

$${}^{\&}_{S_a} = {}^{\&}_{P_a} h_{\rm OKH} p D_a @ jw L_d I_1^2 + {}^{\&}_{S_2}.$$
(266)

Приравняв правые части (26а) и (26б), получаем важный результат

$${}^{\&}_{S_1} \otimes j w L_d I_1^2 + {}^{\&}_{S_2},$$
 (27)

показывающий, что за транспортировку мощности & S_2 по *коридору* между обмотками приходится за-тратить (израсходовать) часть реактивной мощности

$$Q_{\mathsf{d}} = \mathsf{w} L_{\mathsf{d}} I_1^2 \tag{28}$$

от поступающей в трансформатор входной мощно-& сти S_1 . Название *коридор* транспортировки мощности согласуется с предложением Г.Н. Александрова называть окно не областью рассеяния, а рабочей зоной трансформатора [17]. Затрата реактивной мощности Q_d идет на намагничивание *коридора* с целью создания в нем напряженности H_d , необходимой для проведения мощности S_2 .

Примечание 2. Нетрудно показать, что вектор Пойнтинга в *коридоре* между обмотками изменяется по закону

$$\overset{\&}{\mathsf{P}}(r) = j w \frac{\overset{\&}{\mathsf{F}}_{1} - \mathsf{pm}_{0}(r^{2} - (D_{a}/2)^{2}) \overset{\&}{H}_{d}}{2\mathsf{p}r} \overset{*}{H}_{d}.$$

Подставив $r = D_b / 2$, получим выражение для вектора Пойнтинга, направленного из *коридора* перпендикулярно к поверхности вторичной внешней обмотки. После несложных преобразований оно приводится к виду:

$$\overset{\&}{\mathsf{P}}_{b} \circledast \; \frac{\overset{\&}{S_{2}}}{h_{_{\mathrm{OKH}}} \mathsf{p} D_{b}}; \; \overset{\&}{S_{2}} \circledast \overset{\&}{\mathsf{P}}_{b} \mathsf{p} D_{b} h_{_{\mathrm{OKH}}}.$$

В результате с учетом (26б)) можем написать соотношение

$$jQ_{d} = \overset{\&}{\mathsf{P}}_{a}h_{\rm OKH}\mathsf{p}D_{a} - \overset{\&}{\mathsf{P}}_{b}h_{\rm OKH}\mathsf{p}D_{b} = j\mathsf{w}L_{d}I_{1}^{2},$$

которое определяет продольную индуктивность L_d не как элемент рассеяния, а как элемент, явно отображающий в схеме замещения затраты реактивной мощности Q_d на продвижение вектора Пойнтинга в *коридоре* между обмотками. И этот процесс реализуется в результате не противоборства обмоток, а, наоборот, их совместным действием. Другой важный результат получаем, приравняв числители правых частей (24а) и (24б):

$${}^{\&}_{U_1} \otimes j w L_{d} {}^{\&}_{I_1} \frac{w_1}{w_2} {}^{\&}_{U_2}.$$
 (29)

Выражению (29) соответствует первый этап построения схемы замещения идеализированного трансформатора с продольным реактивным сопротивлением $x_d = wL_d$, как показано на рис. 3,6 и в. В рамке на рисунках представлено падение напряжения на сопротивлении wL_d , выраженное через по-& ток F_d в окне между обмотками, что вытекает из первого соотношения (18) после умножения его на *jww*₁. Напряжения на входе и выходе выражены через потоки F_{g}^{a} и F_{g}^{b} , являющиеся прямым следствием (22) и (23). Согласно 2-му закону Кирхгофа обход по контуру в схемах (рис. 3,6 и в), включающему эти потоки, дает уравнение

$$jww_1 \overset{\&}{F}_{d} = jww_1 \overset{\&}{F}_{g}^{a} - jww_1 \overset{\&}{F}_{g}^{b},$$
 (30)

что совпадает с уравнением (13), помноженным на jWw_1 .

Таким образом, первый этап на рис. 3,6 и *в* отображает одновременно энергетические, электрические и магнитные связи в идеализированном трансформаторе с тонкими обмотками, вытекающие из характера распределения вектора Пойнтинга в *коридоре* между обмотками.

П р и м е ч а н и е 3. Передачу активной мощности по схемам первого этапа (рис. 3, б и в) можно представить известным соотношением из теории сетей:

$$P \otimes \frac{U_{1\xi}^{\bigotimes} \frac{w_{1}}{w_{2}} U_{2} \frac{\ddot{\phi}}{\dot{\phi}}}{wL_{d}} \sin q, \qquad (31)$$

где q – угол между векторами $\overset{\&}{U_1}$ и $\overset{\&}{U_2}$. Однако из условий $\overset{\&}{U_1}$ ® *j*Ww₁F₁ и $\overset{\&}{U_2}$ ® *j*Ww₂F₂ с учетом (12) и (14) следует, что такой же угол имеет место между векторами $\overset{\&}{F}_a^g$ и $\overset{\&}{F}_b^g$, и выражение (31) преобразуется к виду

$$P \circledast w \frac{w_1^2 F_{\pi}^a F_{\pi}^b}{L_d} \sin q = w R_d^M F_{\pi}^a F_{\pi}^b \sin q. \quad (32)$$

Правую часть (32) можно рассматривать как условие передачи активной мощности в трансформаторе, состоящее в наличии угла q между потока- $\overset{\&}{\overset{}_{a}}_{g}$ и $\overset{\&}{\overset{}_{g}}_{g}^{b}$ в стыковом ярме.

Диаграмму с реальными магнитными потоками (рис. 3,г), построенную по схеме рис. 3, в для случая активно-индуктивной нагрузки (т.е. для случая угла нагрузки ј_н ³ 0), можно назвать векторной диаграммой трех потоков, что принципиально отличает ее от традиционных «однопоточных» диаграмм, т.е. векторных диаграмм с одним виртуальным «общим потоком сердечника F_0 », не имеющим, как отмечалось, физического содержания. Из нее с помощью дополнительно пристроенного треугольника *abc* нетрудно получить соотношения (31), (32). Зависимость угла q от нагрузки может быть представлена в виде

$$tgq = \frac{wL_d R_H^{\alpha}}{R_H^{\alpha^2} + X_H^{\alpha}(wL_d + X_H^{\alpha})}.$$
 (33)

В случае емкостной нагрузки Х с берется со знаком минус. В режиме K3 угол q® p/2.

Примечание 4. Назовем энергией магнитного поля, запасенной в транспортном коридоре между обмотками, величину [18, с. 84]:

$$W_{d}^{M} = \dot{O} \frac{m_{0} H_{d}^{2}}{2} dV = \frac{m_{0} H_{d}^{2}}{2} s_{d} h_{OKH} \otimes \frac{m_{0} s_{d}}{h_{OKH}} \frac{w_{1}^{2} I_{1}^{2}}{2} = \frac{L_{d} I_{1}^{2}}{2},$$

что позволяет записать

$$L_{d} = \frac{2W_{d}^{M}}{I_{1}^{2}}.$$
 (34)

Отсюда следует общее правило, используемое на следующем этапе: *продольную* индуктивность L_k , отображающую в схеме замещения транспортировку мощности (или вектора Пойнтинга) через k-й участок окна, можно определять через запасаемую в этом участке магнитную энергию $W_k^{\rm M}$:

(Окончание в следующем номере).

СПИСОК ЛИТЕРАТУРЫ

1. Steinmetz C.P. Theory and Calculation of Alternating Current Phenomena. McGraw-Hill Book Company. NY, 1897, First edition. http:openlibrary.org., 431 p.

2. Boyajian A. Resolution of transformer reactances into primary and secondary reactances. AIEE Trans., Jun. 1925, pp. 805-810.

3. Марквардт Е.Г. Электромагнитные расчеты трансформаторов. – М.: ОНТИ, 1938, 136 с.

4. Пенчев П.Р. Въерху разсейването в трансформаторите.-София: Техника, 1969, 123 с.

5. Cherry E.C. The duality between interlinkend electric and magnetic circuits and the formulation of transformer equivalent circuits. - Proceedings of the Physical Society, Feb. 1949, vol. (B) 62, pp. 101-111.

6. Blume L.F., Boyajian A., Gamilly G., Lenox T.C., Minnec S., Montsinger M.V. Transformer Engineering: A treatise on the Theory, Operation and Application of Transformer. New York: Wiley, 1951, 239 c.

7. Slemon G.R. Equivalent Circuits for Transformers and machines including nonlinear effects. - Proc. Inst. Elect. Eng., 1953, IV, vol. 100, pp. 129-143.

8. Лейтес Л.В., Пинцов А.М. Схемы замещения многообмоточных трансформаторов. - М.: Энергия, 1974, 192 с.

9. Leon F., Gomez P., Martinez-Velasco, Rioual M. Transformers in Power System Transients: Parameter Determination. Ed. Boca Raton, FL: CRC, 2009, ch.4, pp. 177-250.

10. Leon F., Farazmand A., Joseph. Comparing the T and Equivalent Circuits for the Calculation of Transformer Inrush Currents. - IEEE Trans. Power Delivery, October 2012, vol. 27, No. 4, pp. 2390-2397.

11. Копылов И.П. Математическое моделирование электрических машин. - М.: Высшая школа, 2001, 327 с.

12. Брон О.Б. Электромагнитное поле как вид материи. – М.: Госэнергоиздат, 1962, 260 с.

13. Туровский Я. Техническая электродинамика. - М.: Энергия, 1974, 498 с.

14. Лейтес Л.В. Вектор Пойнтинга в реакторе и трансформаторе. – Электричество, 1978, № 7, с. 45-50.

15. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники. – Л.: Энергоиздат, 1981, т. 2, 536 с.

16. Kulcarni S.V., Khaparde S.A. Transformer Engineering: Desine and Practice, CRC Press, Boca Raton, Fl, 2004, 467 p.

17. Александров Г.Н., Шакиров М.А. Трансформаторы и реакторы: новые идеи и принципы. - СПб: Изд-во Политехнического университета, 2006, 204 с.

18. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. - М.: Энергоатомиздат, 1989, 528 с.

19. Сергеенков Б.Н., Киселев В.М., Акимова Н.А. Электрические машины: Трансформаторы/Под ред. И.П. Копылова. -

$L_k = \frac{2W_k^{\rm M}}{L^2}$. (35) ческие машины: Трансформаторы/Под ред. И.П. M.: Высшая школа, 1989, 352 с. The Poynting Vector and a New Theory of Transformers

M.A. SHAKIROV

A new formula (model) describing the operating principle of a power transformer is presented, which follows from the Poynting vector distribution pattern in the gap between the transformer's primary and secondary windings. Developed 4E-shaped equivalent circuits and vector diagrams containing localized values of all magnetic fluxes in the magnetic core aperture and in the transformer iron have been obtained proceeding from this principle. It is confirmed that superfluxes and antifluxes really emerge simultaneously in different parts of the magnetic core during both steady and abrupt short-circuit faults in one of the windings. A conclusion is drawn about the need to revise the transformer theory. This statement was predetermined by works of many researchers criticized the T- and Pi-shaped equivalent networks of a

transformer. It is shown that the problem can be solved only through gaining a deeper insight in the physical principles of transformer operation.

Key words: transformer, primary and secondary windings, magnetic flux, vector diagram, equivalent circuit, short-circuit fault, magnetic field strength, electric field intensity

REFERENCES

1. **Steinmetz C.P.** Theory and Calculation of Alternating Current Phenomena. McGraw-Hill Book Company. NY, 1897, First edition. http:openlibrary.org., 431 p.

2. **Boyajian A.** Resolution of transformer reactances into primary and secondary reactances. AIEE Trans., Jun. 1925, pp. 805–810.

3. Markvardt E.G. *Elektromagnitnye raschety transformatorov* (Electromagnetical Calculatings of Transformers). Moscow. United Scientifically-Technical Publ. House, 1938, 136 p.

4. **Penchev P.R.** V''erkhu razseivaneto v transformatorite. Sofija. Technology, 1969, 123 p.

5. Cherry E.C. The duality between interlinkend electric and magnetic circuits and the formulation of transformer equivalent circuits. – Proceedings of the Physical Society, Feb. 1949, vol. (B) 62, pp. 101–111.

6. Blume L.F., Boyajian A., Gamilly G., Lenox T.C. Minnec S. Montsinger M.V. Transformer Engineering: A treatise on the Theory, Operation and Application of Transformer. New York: Wiley, 1951, 239 c.

7. Slemon G.R. Equivalent Circuits for Transformers and machines including nonlinear effects. – Proc. Inst. Elect. Eng., 1953, IV, vol. 100, pp. 129–143.

8. Leites L.V., Pintsov A.M. Skhemy zameshcheniya mnogoobmotochnykh transformatorov (Equivalent Circuits of the Polywinding Transformers). Moscow. Publ. «Energiya», 1974, 192 p.

9. Leon F., Gomez P., Martinez-Velasco, Rioual M. Transformers in Power System Transients: Parameter Determination. Ed. Boca Raton, FL: CRC, 2009, ch.4, pp. 177–250.

10. Leon F., Farazmand A., Joseph. Comparing the T and Equivalent Circuits for the Calculation of Transformer Inrush Currents. IEEE Trans. Power Delivery, October 2012, vol. 27, No. 4, pp. 2390–2397.

11. **Kopylov I.P.** *Matematicheskoye modelirovaniye elektricheskikh mashin* (Mathematical Modeling of Electrical Machines). Moscow. Publ. «Visshaya Shkola», 2001, 327 p.

12. **Bron O.B.** *Elektromagnitnoye pole kak vid materii (*The Electromagnetic Field as a Matter). Moscow. Publ. «Gosenergoizdat», 1962, 260 p.

13. Turovskii Ya. Tekhnicheskaya elektrodinamika (Technical Electrodynamics). Moscow. Publ. «Energiya», 1974, 498 p.

14. Leites L.V. Elektrichestvo (Electricity), 1978, No 7, pp. 45–50.

15. Neiman L.R., Demirchyan K.S. *Teoreticheskiye osnovy elektrotekhniki* (Theoretical Principles of Electrical Engineering). Leningrad, 1981, vol. 2, 536 p.

16. Kulcarni S.V., Khaparde S.A. Transformer Engineering: Desine and Practice, CRC Press, Boca Raton, Fl, 2004, 467 p.

17. Aleksandrov G.N., Shakirov M.A. *Transformatory i reaktory: novye idei i printsipy* (Transformers and Reactors: New Ideas and Principles). St. Petersburg. Publ. of the Polytechnical University, 2006, 204 p.

18. Zeveke G.V., Ionkin P.A., Netushil A.V., Strakhov S.V. *Osnovy teorii tsepei* (Principles of the Circuit Theory). Moscow. Publ. «Energoatomizdat», 1989, 528 p.

19. Sergeenkov B.N., Kiselev V.M., Akimova N.A. *Elektricheskiye* mashiny: transformatory (Electrical Machines: transformers)/Edit. by I.P. Kopylov. Moscow. Publ. «Vysshaya Shkola», 1989, 352 p.

20. Shakirov M.A. Elektrichestvo (Electricity), 2010, No 5, pp. 19-36.

21. Ionkin P.A., Darevskii A.I., Kukharkin E.S., Mironov V.G., Mel'nikov N.A. *Teoreticheskiye osnovy elektrotekhniki* (Teoretical Principles of Electrical Engineering). Moscow. Publ. «Visshaya Shkola», 1976, vol. 2, 583 p.

22. Shakirov M.A. Elektrichestvo (Electricity), 2005, No 11, pp. 15–27.

A ut h o r: Shakirov Mansur Akmelovich (St. Petersburg, Russia) – Doctor Techn. Sci. He is Professor at the St. Petersburg State Polytechnical University.

* *

20. Шакиров М.А. 2Т-образные схемы замещения трансформаторов. – Электричество, 2010, № 5, с. 19–36. 21. Ионкин П.А., Даревский А.И., Кухаркин Е.С., Миронов В.Г., Мельников Н.А. Теоретические основы электротехники. – М.: Высшая школа, 1976, т. 2, 583 с.

22. Шакиров М.А. Анализ неравномерности распределения

Вниманию предприятий, организаций, НИИ, вузов России

и зарубежных фирм!

Журнал «Электричество» предоставляет свои страницы для

- РЕКЛАМЫ ИЗДЕЛИЙ отечественных предприятий и зарубежных фирм
- в области энергетики, электротехники, электроники, автоматики

• ПУБЛИКАЦИИ ОБЪЯВЛЕНИЙ о научных симпозиумах, конференциях, совещаниях, семинарах

• ДРУГОЙ ИНФОРМАЦИИ, соответствующей тематике журнала

Сообщаем, что журнал поступает к зарубежным подписчикам во многих странах мира. Напоминаем наш адрес: 101000 Москва, Главпочтамт, а/я 648.

Тел./факс (495)362-7485

агнитных нагрузок и потерь в трансформаторах на основе магнитоэлектрических схем замещения. — Электричество, 2005, № 11, с. 15–27.

[17.02.14]

Автор: Шакиров Мансур Акмелович окончил электромеханический факультет Ленинградского политехнического института (ЛПИ, ныне Санкт-Петербургский государственный политехнический университет — СПбГПУ) в 1967 г. В 1980 г. защитил в ЛПИ докторскую диссертацию «Разработка общих основ общей теории преобразований сложных электрических схем и применение ее к диакоптике цепей и электромагнитных полей. Профессор кафедры теоретических основ электротехники СПбГПУ.