Электрическая прочность макета воздушно-барьерной главной изоляции обмоток сухого трансформатора при воздействии переменного напряжения

ЛАРИН В.С., ДАНИШИНА А.А., СВИРИДОВ М.А.

Приведены результаты исследований электрической прочности воздушно-барьерной изоляции сухих трансформаторов с открытыми обмотками классов напряжения свыше 30 кВ. Информация по электрической прочности таких трансформаторов практически отсутствует, а перспективы их разработки и применения сегодня весьма высоки. Предложен инженерный метод расчета главной изоляции сухих трансформаторов, основанный на определении эквивалентной длины изоляционного промежутка и дальнейшем применении для него известных зависимостей разрядных напряжений для промежутков «стержень—стержень».

Ключевые слова: сухой трансформатор, воздушно-барьерная изоляция, электрическая прочность, исследования

В последние годы все большую актуальность приобретают вопросы обеспечения взрыво- и пожаробезопасности, экологичности, а также снижения эксплуатационных расходов на обслуживание трансформаторного оборудования. Одним из решений этих вопросов является применение сухих трансформаторов с воздушной изоляцией.

За рубежом достигнут существенный прогресс в повышении класса напряжения сухих трансформаторов. Сравнительно недавно освоено производство сухих трансформаторов на наибольшее рабочее напряжение 72,5 кВ [1, 2], и обсуждается возможность дальнейшего повышения напряжения сухих трансформаторов вплоть до 121 кВ.

В России сухие трансформаторы широко применяются на классы напряжения до 35 кВ включительно и проводятся работы по дальнейшему повышению класса напряжения сухих трансформаторов до 110 кВ включительно [3].

Одной из основных задач при разработке сухого трансформатора высокого напряжения является обеспечение требуемой электрической прочности изоляции, в первую очередь продольной и главной изоляции обмоток.

В открытых публикациях практически отсутствуют сведения об электрической прочности изоляции сухих трансформаторов, а существующие публикации, например [6], содержат результаты для сравнительно небольших изоляционных промежутков, применимые для трансформаторов класса напряжения не более 20 кВ.

Для повышения класса напряжения сухих трансформаторов требуется применение материалов с большей электрической прочностью и увеличение изоляционных воздушных промежутков, для чего необходимо проведение соответствующих исследований электрической прочности изоляции на моделях и макетах.

Результаты исследований продольной изоляции обмоток с усиленной витковой изоляцией представлены в [4, 5]. В статье представлены результаты исследований электрической прочности макета главной изоляции обмоток для больших по сравнению с [6] изоляционных промежутков при воздействии переменного напряжения.

Объект и методика исследований. Исследования проведены на масштабном макете воздушно-барьерной изоляции (рис. 1), имитирующем главную изоляцию обмоток сухого трансформатора высокого напряжения. Макет содержит непрерывную обмотку высшего напряжения (ВН) внутренним диаметром 1030 мм, намотанную на стеклопластиковом цилиндре (материал — ЦСЭФ) с рейками (материал — СТЭФ), цилиндрическую обмотку низшего напряжения (НН), намотанную на стеклопластиковом цилиндре, и изоляционные цилиндрические барьеры (ЦСЭФ), а также опорную крестовину. Верхний край обмотки ВН экранирован неизолированным емкостным кольцом с большим радиусом закругления. В макете имеется возможность регулировать высоту расположения обмоток НН и ВН и тем самым изменять вылет барьеров С над обмотками.

Исследования проведены для двух значений расстояния между обмотками *S*, составляющих 100 и 150 мм, при вылете барьера над обмотками C, равном 100, 50, 30 и 0 мм (обмотки HH и BH во всех случаях находились на одном уровне по высоте).

Рис. 1. Схема макета воздушно-барьерной изоляции: 1 – обмотка НН; 2 – обмотка ВН; 3 – изоляционные цилиндры; 4 – рейка; 5 – емкостное кольцо; 6 – опорная изоляция; 7 – опорная крестовина

Исследования электрической прочности изоляции проводились при воздействии напряжения частотой 50 Гц. Напряжение поднималось ступенями, начиная с 70–80% ожидаемого пробивного, с шагом ступени от 3–7%. Выдержка на каждой ступени – 1 мин, пауза между ступенями – 1 мин. Между двумя сериями приложений напряжения пауза составляла 5 мин. Для последующей статистической обработки по каждому варианту последовательно выполнялось по 5–10 серий приложений напряжения до полного разряда (перекрытия) изоляции макета.

Для снижения вероятности повреждения изоляционных цилиндров под действием полных разрядов в цепи высокого напряжения было установлено защитное токоограничивающее сопротивление, а напряжение отключалось, по возможности, сразу после полного разряда. Сравнительно небольшой разброс разрядных напряжений (см. далее) в каждой серии испытаний свидетельствует о достаточности принятых мер для снижения влияния накопления повреждений твердой изоляции.

Испытания проведены при следующих условиях: атмосферное давление 986—1006 мбар; температура воздуха +13 — +20 °С; относительная влажность воздуха 56—72%. Полученные напряжения полного разряда приводились к нормальным условиям согласно [7].

Полный разряд промежутка фиксировался на фото- и видеозаписывающую аппаратуру. Дополнительно по каждому варианту проводилось визуальное наблюдение за динамикой развития разряда с помощью ультрафиолетового дефектоскопа (Филин-6) при ступенчатом подъеме напряжения до полного разряда.

Результаты и их обсуждение. Полученные значения среднеразрядных напряжений воздушно-барьерной изоляции макета представлены в таблице. По итогам статистической обработки результатов также получены среднеквадратичные отклонения разрядного напряжения, которые для рассмотренных вариантов не превышают 2–3%.

Расстоя- ние между обмотка- ми <i>S</i> , мм	Вылет барьера над обмотка- ми <i>С</i> , мм	Число цилинд- ров между обмотка- ми	Средне- разрядное напряже- ние <i>U</i> _{пр.ср} , кВ	Длина пути полного разряда <i>L</i> , мм
100	50	2	91	161
	30		79	129
	0		62	100
150	100	3	126	304
	50		105	211
	0		84	

По результатам визуального наблюдения за динамикой развития разрядов с помощью ультрафиолетового дефектоскопа при ступенчатом подъеме переменного напряжения можно выделить в общем случае следующие характерные этапы:

а) возникновение и развитие стримерной короны на верхней части обмотки НН, направленной в сторону обмотки ВН;

б) возникновение стримерной короны на острых кромках цилиндра и реек обмотки BH, направленной в сторону обмотки HH;

в) развитие стримерной короны с поверхности емкостного кольца обмотки ВН;

г) полный разряд с перекрытием изоляции по воздуху (рис. 2).

Рис. 2. Полный разряд воздушно-барьерной изоляции макета

Таким образом, для рассмотренных вариантов сочетаний геометрических параметров макета разряд, в основном, происходил в стримерной форме. Необходимо отметить, что в случае малых значений вылета барьеров *C* коронный разряд на обмотке НН при последующем увеличении напряжения практически сразу переходил в полный разряд межобмоточного промежутка, минуя этапы б) и в).

С учетом результатов наблюдений с помощью ультрафиолетового дефектоскопа и фоторегистрации можно сделать вывод о том, что полный разряд в воздушно-барьерной изоляции при достаточной электрической прочности изоляционных цилиндров происходит вдоль их поверхности. На основании этого может быть сделана оценка минимальной длины пути полного разряда L как кратчайшего расстояния между обмотками в обход изоляционных цилиндров (по «трапеции»), которое для исследуемого макета может быть определено следующим образом:

$$L = \sqrt{C^2 + S_1^2} + (S - S_1 - S_2) + \sqrt{C^2 + S_2^2}, \quad (1)$$

где S_1 — ширина воздушного канала, прилегающего к наружной поверхности обмотки HH; S_2 — то же — к внутренней поверхности обмотки BH.

Полученные зависимости $U_{\text{пр.ср}} = f(L)$ для двух расстояний между обмотками представлены на рис. 3, где также показаны зависимости среднеразрядных напряжений для характерных промежутков «стержень–плоскость» и «стержень–стержень» [8].

Рис. 3. Зависимость среднеразрядного напряжения главной изоляции макета от минимальной длины пути полного разряда: *I* – *S*=100 мм; *2* – 150 мм; *3* – стержень—плоскость; *4* – стержень—стержень

Как видно из рис. 3, полученные зависимости среднеразрядных напряжений воздушно-барьерной изоляции в исследуемом диапазоне длины пути разряда носят практически линейный характер и в целом хорошо согласуются со среднеразрядными напряжениями промежутка «стержень–стержень». Имеющиеся отклонения в большую сторону в зна-

чениях среднеразрядных напряжений можно объяснить, в первую очередь, меньшей неоднородностью электрического поля в макете по сравнению с промежутком «стержень—стержень» и отличием фактической длины разряда от принятого кратчайшего расстояния между обмотками, определенного по (1).

Таким образом, оценка электрической прочности воздушно-барьерной изоляции макета с определенным запасом может быть выполнена путем определения кратчайшей длины пути разряда с учетом расположения барьеров между обмотками и использования зависимости среднеразрядного напряжения промежутка «стержень—стержень».

При испытаниях расстояние между обмотками не превышало 150 мм, а отношение вылета барьеров к этому расстоянию между обмотками C/S не превышало 0,67. Необходимо отметить, что при дальнейшем увеличении вылета барьеров над обмотками, а также при увеличении расстояния между обмотками нельзя исключать изменения механизма развития разряда, его переход в стримерно-лидерную форму, т.е. экстраполяция полученных результатов требует отдельной экспериментальной проверки.

Также необходимо отметить, что исследуемый макет воздушно-барьерной изоляции не содержал заземленного верхнего ярма (или его имитации), в то время как при размещении ярма вблизи обмоток возможно, как это было показано в [6], некоторое снижение среднеразрядных напряжений главной изоляции. Экспериментальное изучение влияния верхнего ярма является одним из дальнейших направлений работ по исследованию электрической прочности главной воздушно-барьерной изоляции.

Выводы. 1. В исследованном диапазоне геометрических параметров макета разряд происходит, в основном, в стримерной форме, при этом среднеразрядное напряжение с увеличением расстояния изменяется практически линейно.

2. Оценка электрической прочности макета воздушно-барьерной изоляции с некоторым запасом может быть выполнена путем определения кратчайшей длины пути разряда между обмотками и при использовании зависимости среднеразрядного напряжения промежутка «стержень—стержень».

3. Экстраполяция полученных результатов на большие размеры изоляционных расстояний требует отдельной экспериментальной проверки в связи с возможностью перехода разряда в лидерную форму при большей длине пути разряда.

Авторы выражают благодарность А.Ю. Волкову, А.И. Казакову, Е.С. Сарнецкому и С.А. Тузову, принимавшим участие в подготовке и проведении испытаний.

СПИСОК ЛИТЕРАТУРЫ

1. **Carlen M., Berrogain M.** Dry-type subtransmission transformer installations and potential grid interactions. — CIGRE SC A2 & C4 JOINT COLLOQUIUM, 2013, Zurich (Switzerland).

2. Carlen M., Berrogain M., Cameroni R., Spiranelli M. Dry-type subtransmission transformer: compact and safe indoor substations. – 45th CIGRE session, Report A2-304. Paris (France), 2014.

3. **Ларин В.С., Светоносов В.П.** О разработке сухого трансформатора 110 кВ. — Электрические станции, 2014, № 1, с. 37–42.

4. Волков А.Ю., Гусев С.И., Ларин В.С., Матвеев Д.А., Милкин Е.А. Импульсная электрическая прочность витковой изоляции обмоточных проводов сухих трансформаторов. — Электро. Электротехника, электроэнергетика, электротехническая промышленность, 2012, № 5, с. 15–17.

5. Волков А.Ю., Гусев С.И., Ларин В.С., Матвеев Д.А. Импульсная электрическая прочность обмоточных проводов сухих трансформаторов с усиленной витковой изоляцией. – Электро. Электротехника, электроэнергетика, электротехническая промышленность, 2013, № 2, с. 42–46.

6. Шнейдер Г.Я. Электрическая прочность главной изоляции сухих трансформаторов. – Электротехника, 1975, № 4, с. 9–12.

Elektrichestvo (Electricity), 2015, No. 6, pp. 20-23.

7. ГОСТ 1516.2–97. Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции. – М.: Изд-во стандартов, 1998, 35 с.

8. Техническая информация ТИ 420.1. Пробой воздуха при 50 Гц. МТЗ, 1946.

[11.12.14]

Авторы: Ларин Василий Серафимович окончил Институт электроэнергетики Московского энергетического института (МЭИ – ныне Научно-исследовательский университет «МЭИ» — НИУ «МЭИ») в 2004 г. В 2007 г. защитил кандидатскую диссертацию «Исследование и разработка эффективного метода расчета внутренней изоляции силовых трансформаторов». Начальник отдела трансформаторов Всероссийского электротехнического института (ВЭИ). Регулярный член Исследовательского комитета А2 «Трансформаторы» СИГРЭ.

Данишина Александра Андреевна — инженер отдела трансформаторов ВЭЙ.

Свиридов Михаил Александрович окончил Институт электроэнергетики МЭИ (ТУ) в 2012 г. Аспирант НИУ «МЭИ». Инженер отдела трансформаторов ВЭИ.

The Electric Strength of a Mockup of the Main Air-Barrier Insulation of Dry Transformer Windings with Respect to AC Voltage

V.S. LARIN, A.A. DANISHINA, and M.A. SVIRIDOV

The article presents the results from investigations of the electric strength of air-barrier insulation of dry-type transformers with open windings for voltage classes higher than 20 kV. An engineering approach is proposed to calculating the main insulation of dry-type transformers, which is based on determining the equivalent length of insulation gap with subsequently applying for it the well-known dependences of discharge voltages for "rod-to-rod" gaps.

Key words: transformer, air-barrier insulation, electric strength, investigations

REFERENCES

1. **Carlen M., Berrogain M.** Dry-type subtransmission transformer installations and potential grid interactions. — CIGRE SC A2 & C4 JOINT COLLOQUIUM, 2013, Zurich (Switzerland).

2. Carlen M., Berrogain M., Cameroni R., Spiranelli M. Dry-type subtransmission transformer: compact and safe indoor substations. — 45th CIGRE session, Report A2-304. Paris (France), 2014.

3. Larin V.S., Svetonosov V.P. Elektricheskiye stantsii – in Russ. (Electric Power Stations), 2014, No. 1, pp. 37–42.

4. Volkov A.Yu., Gusev S.I., Larin V.S., Matveyev D.A., Milkin Ye.A. Elektro. Elektrotekhnika, Elektroenergetika, Elektrotekhnicheskaya promyshlennost' – in Russ. (Electro. Electrical Engineering, Power Engineering, Electrical Engineering Industry), 2012, No. 5, pp. 15–17. 5. Volkov A.Yu., Gusev S.I., Larin V.S., Matveyev D.A. Elektro. Elektrotekhnika, Elektroenergetika, Elektrotekhnicheskaya promyshlennost' – in Russ. (Electro. Electrical Engineering, Power Engineering, Electrical Engineering Industry), 2013, No. 2, pp. 42–46.

6. Shneider G.Yu. Elektrotekhnika – in Russ. (Electrical Engineering), 1975, No. 4, pp. 9–12.

7. GOST 1516.2–97. Elektrooborudovaniye i elektroustanovki peremennogo toka na napryazheniye 3 kV i vyshe. Obshchiye metody ispytanii elrktricheskoi prochnosti izolyatsii (Electrical equipment and installations AC voltage 3 kV. Common test methods for dielectric strength). Moscow. Publ. Standards, 1998, 35 p.

8. **Tekhnicheskaya** *informatsiya TI420.1. Proboi vozdukha pri 50 Hz* (Technical Information TI420.1. Air breakdown at 50 Hz). Moscow Transformer Plant, 1946.

Authors: Larin Vasily Serafimovich (Moscow, Russia) – Cand. Sci. (Eng.). Head of the Department at the All-Russian Electrotechnical Institute (AREI). Regular members of the CIGRE Study Committee A2 «Transformers». Danishina Aleksandra Andreyevna (Moscow, Russia) – Engineer at the AREI. Sviridov Mikhail Aleksandrovich (Moscow, Russia) – Engineer at the AREI.