Оптимизация и оценка параметров реакторов с сетевой и вентильной обмотками¹

ГВОЗДЕВ Д.Б., КОЧКИН В.И., КУБАРЕВ Л.П., ФЕДОСОВ Л.Л., ЧЕРЕЗОВ А.В.

Предложен унифицированный метод расчета и проектирования электромагнитных частей управляемого тиристорами шунтирующего реактора и устройства ограничения токов короткого замыкания. На основе полученных аналитических выражений разработана компьютерная программа электромагнитного расчета трехфазных компенсирующих реакторов трансформаторного типа, зарегистрированная в государственном реестре. Приведены примеры расчета.

Ключевые слова: шунтирующие реакторы, обмотки, электромагнитные части, расчет, проектирование

Для обеспечения устойчивости современных электроэнергетических систем необходимо воздействовать на процессы передачи и распределения активной и реактивной мощности с высоким быстродействием в режиме реального времени. Аналогичные требования возникают к устройствам, упреждающим или ограничивающим последствия аварийных и внештатных режимов работы энергосистемы. Для этих целей применяются высоковольтные устройства силовой электроники и специальные электрические реакторы, индуктивность которых можно изменять с высокой скоростью.

Одним из способов быстрого изменения индуктивности реактора является применение в нем наряду с сетевой обмоткой (СО) вентильной обмотки (ВО), подключенной к блоку управляемых полупроводниковых приборов (тиристорным ключам) или к быстродействующему коммутационному устройству [1].

Следует отметить, что в дальнейшем это направление было продолжено компанией BBC и Г.Н. Александровым [2]. Однако опубликованные идеи не получили широкого практического внедрения в электрических сетях, возможно по коммерческим соображениям. Авторам настоящей статьи удалось развить метод расчёта реактора трансформаторного типа [3] с $E_{\rm K} = 100\%$ и создать оптимизационную компьютерную программу по выбору параметров такого типа реакторов, что позволило снизить затраты на их изготовление и эксплуатацию.

Особенностью конструкции реакторов является наличие замкнутой магнитной системы, возможно

A unified method for calculating and designing the electromagnetic parts of a thyristor-controlled shunting reactor and a device for limiting short-circuit currents is proposed. A computer program for carrying out electromagnetic calculations of three-phase transformer-type compensating reactors is developed on the basis of the obtained analytical expressions, which has been entered in the state register. Calculation examples are given.

Key words: *shunting reactors, windings, electromagnetic parts, calculation, designing*

с небольшими немагнитными зазорами в основных стержнях и магнитных шунтов, защищающих бак и металлические элементы конструкции от магнитных потоков, замыкающихся вне магнитопровода.

Например, в высоковольтном компенсирующем реакторе, предназначенном для работы параллельно с мощной конденсаторной батареей, имеющем замкнутый магнитопровод, применяется ВО (как правило, относительно низкого напряжения, ближайшая к стержню), к зажимам которой присоединен блок из двух параллельно встречно включенных тиристоров. Управляя моментом включения тиристоров, можно практически мгновенно изменять действующее значение тока СО и, следовательно, потребление реактивной мощности в диапазоне от номинального значения (режим короткого замыкания – КЗ ВО) до долей процента номинального значения (режим холостого хода – х.х.). Аналогичная конструкция применима и для шунтирующих реакторов, используемых для компенсации зарядной мощности высоковольтных линий электропередачи, или дугогасящих реакторов в распределительных сетях 6, 10 и 35 кВ.

Для сетей 110–220 кВ с токами КЗ, превышающими значения токов отключения установленной коммутационной аппаратуры, возможно применение ранее предлагаемых проф. Б.Н. Неклепаевым токоограничивающих реакторов, к ВО которых присоединены быстродействующие отключающие устройства на основе управляемых полупроводниковых приборов, вакуумных дугогасительных камер или взрывного типа. В этом случае номинальным режимом работы реактора будет режим КЗ ВО, при котором индуктивное сопротивление реактора, оп-

¹В порядке обсуждения. *Ред.*

ределяемое магнитным полем вне стержня магнитопровода, мало. В кратковременном режиме работы с разомкнутой ВО сопротивление реактора может быть увеличено на 2–3 порядка (в случае замкнутого магнитопровода) или в 10–20 раз (если магнитопровод с зазорами).

По исполнению магнитной системы и обмоток указанные реакторы близки к конструкциям силовых трансформаторов (ГОСТ 16110-82), методы электромагнитного расчета которых достаточно подробно описаны в [3]. Однако особенности эксплуатационных характеристик реакторов с сетевой и вентильной обмотками (напряжение КЗ пары обмоток до 100%, стремление снизить потери х.х. и КЗ в обмотках и элементах конструкции) требуют определенных корректировок электромагнитного расчета, которые не нашли должного отражения в публикациях.

Кроме того, представляет интерес вывод достаточно простых формул и соотношений, устанавливающих связь геометрических размеров реакторов с их основными параметрами и электромагнитными нагрузками. Такие соотношения особенно полезны на стадии предварительного выбора оптимального варианта конструкции реактора.

Рассмотрим однофазный компенсирующий реактор с круглыми СО и ВО, бронестержневым магнитопроводом и замкнутой системой магнитных

Рис. 1. Схема конструкции реактора: a – бронестержневого (БСТ); δ – двухстержневого (2СТ)

Основным параметром, определяющим габариты и стоимость реактора, является его максимальная мощность в режиме КЗ ВО. Для компенсирующего реактора — это по определению номинальная мощность, а для токоограничивающего реактора мощность, определяемая произведением приложенного к СО напряжения сети при внешнем КЗ на ток линии, протекающий через реактор:

$$Q_{\rm K} = U_{\rm \phi CO}^2 / x_{\rm CO}; \ Q_{\rm TO} = I_{\rm J,H} U_{\rm K3},$$
 (1)

где $U_{\phi CO}$ – напряжение на зажимах реактора, равное наибольшему длительно допустимому фазному напряжению сети, В; x_{CO} – индуктивное сопротивление реактора со стороны СО в режиме КЗ ВО, Ом; $I_{\rm л.H}$ – номинальный ток линии; $U_{\rm K3}$ – напряжение на реакторе при КЗ.

Учитывая, что одним из условий работы указанных типов реакторов является отсутствие насыщения стали в любом режиме, номинальное напряжение на зажимах СО принимаем равным напряжению в режиме работы с разомкнутой ВО (аналогичном режиму х.х. силовых трансформаторов):

$$U_{\phi CO} = 2 \pi f w_{CO} \frac{B_{CT.M}}{\sqrt{2}} \frac{\pi D_{CT}^2}{4} k_{cT}, \qquad (2)$$

где f — частота, Гц; $w_{\rm CO}$ — число витков сетевой обмотки; $B_{\rm CT.M}$ — амплитуда индукции в стали магнитопровода, Тл; $D_{\rm C.M}$ — диаметр стержня магнитопровода, м; $k_{\rm CT}$ — коэффициент заполнения сталью.

Индуктивностью реактора является индуктивность рассеяния в опыте КЗ пары обмоток:

$$x_{\rm CO} = \omega L_{\rm CO} = 2\pi\mu_0 w_{\rm CO}^2 S_{\rm pac} / h_{\rm oK},$$
 (3)

где $\mu_0 = 4\pi \cdot 10^{-7}$ — магнитная постоянная, Гн/м; $h_{\rm ok}$ — высота окна магнитопровода (в двухстержневом реакторе — удвоенная), принятая совпадающей с длиной силовых линий поля рассеяния (поскольку радиальный размер обмоток и канала между обмотками заведомо больше зазора между торцом обмоток и магнитными шунтами), м; $S_{\rm pac}$ — площадь канала рассеяния в предположении, что радиальные размеры обмоток не сильно отличаются друг от друга:

$$S_{\text{pac}} = \pi (D_{\text{c.M}} + 2\Delta_{\text{c-BO}} + 2b_{\text{BO}} + b_{\text{K}}) \left(b_{\text{K}} + \frac{b_{\text{BO}} + b_{\text{CO}}}{3} \right).$$
(4)

Здесь Δ_{c-BO} — радиальный размер изоляционного канала между стержнем и ВО, м; b_{BO} , b_{CO} — радиальные размеры ВО и СО, м; b_{K} — радиальный размер изоляционного канала между ВО и СО, м.

Радиальные размеры обмоток в первом приближении можно оценить, используя значения коэффициентов заполнения обмоток материалом провода из близких аналогов обмоток, используемых в силовых трансформаторах, по формулам:

$$I_{\rm CO}w_{\rm CO} = J_{\rm CO}h_{\rm CO}b_{\rm CO}k_{\rm CO};$$

$$I_{\rm BO}w_{\rm BO} = J_{\rm BO}h_{\rm BO}b_{\rm BO}k_{\rm BO},$$
(5)

где $I_{\rm CO}$, $I_{\rm BO}$ – номинальные токи в CO и BO, A; $J_{\rm CO}$, $J_{\rm BO}$ – плотность тока в CO и BO, A/м²; $h_{\rm CO}$, $h_{\rm BO}$ – высота обмоток, м; $k_{\rm CO}$, $k_{\rm BO}$ – коэффициенты заполнения обмоток.

Принимая высоту ВО и СО одинаковой и равной $h_{\text{обм}}$, учитывая равенство ампер-витков обмоток в режиме КЗ ВО и подставляя в (5) значение $w_{\text{СО}}$ из (2), получим:

$$b_{\rm BO} = \frac{2\sqrt{2}}{\pi^2} \frac{U_{\rm \phi CO} I_{\rm CO}}{f B_{\rm CT.M} J_{\rm BO} h_{\rm o \bar{\rm o} M} k_{\rm CT} k_{\rm BO}} \frac{1}{D_{\rm c.M}^2}; \qquad (6)$$
$$b_{\rm CO} = \frac{J_{\rm BO} k_{\rm BO}}{J_{\rm CO} k_{\rm CO}} b_{\rm BO}; \quad h_{\rm o \bar{\rm o} M} = h_{\rm o K} - 2\Delta_{\rm o-\pi},$$

где Δ_{0-9} — размер изоляционного канала между торцами обмоток и ярмами, м.

Подставляя в (1) значения, полученные из (2) и (3) с учётом (4) и (6) при $J_{\rm CO} = J_{\rm BO}$, получим уравнение для определения диаметра стержня и высоты окна магнитопровода по заданным значениям но-минальных параметров, электромагнитных нагрузок и размеров основных изоляционных промежут-ков:

$$A_{1}h_{\rm oK}D_{\rm c.M}^{4} - \pi \left(D_{\rm c.M} + 2\Delta_{\rm c-BO} + b_{\rm K} + \frac{A_{2}}{(h_{\rm oK} - 2\Delta_{\rm o-9})D_{\rm c.M}^{2}}\right) \left(b_{\rm K} + \frac{A_{2}(1 + k_{\rm BO} / k_{\rm CO})}{6(h_{\rm oK} - 2\Delta_{\rm o-9})D_{\rm c.M}^{2}}\right) = 0,$$
(7)

где для компенсирующих и шунтирующих реакторов:

$$A_{1} = \frac{\pi^{2}}{64} 10^{7} \frac{fB_{\text{CT.M}}^{2}}{Q_{\text{max}}} k_{\text{CT}}^{2}, \ 1/\text{ m}^{3};$$

$$A_{2} = \frac{4\sqrt{2}}{\pi^{2}} \frac{Q_{\text{max}}}{fB_{\text{CT.M}}J_{\text{BO}}k_{\text{CT}}k_{\text{BO}}}, \ \text{m}^{4};$$
(8)

для токоограничивающих реакторов:

$$A_{1} = \frac{\pi^{2}}{64} 10^{7} \frac{fB_{\text{cT.M}}^{2}}{U_{\phi\text{CO}}^{2}} k_{\text{cT}}^{2} x_{\text{CO}}, \ 1/\text{ m}^{3};$$

$$A_{2} = \frac{4\sqrt{2}}{\pi^{2}} \frac{U_{\phi\text{CO}} I_{\text{CO}}}{fB_{\text{cT.M}} J_{\text{BO}} k_{\text{cT}} k_{\text{BO}}}, \ \text{m}^{4}.$$
(9)

Определенные по (7) взаимосвязанные значения диаметра стержня и высоты окна магнитопровода, а по (6) — значения радиальных размеров обмоток позволяют провести оценочный электромагнитный расчет реакторов при разных значениях диаметра стержня магнитопровода и выбрать его оптимальный диаметр.

Для однофазных реакторов с очень большим диаметром стержня магнитопровода целесообразно применение двухстержневой конструкции (рис. 1, δ). В этом случае коэффициенты (9) в уравнении (7) рассчитывают как

$$A_{1(2c)} = 2A_{1(6c)}; A_{2(2c)} = 2A_{2(6c)}/2,$$
 (10)

где индексы «2с» и «бс» означают двухстержневую и бронестержневую однофазные конструкции.

Наличие небольших по высоте немагнитных зазоров в стержне магнитопровода не очень заметно влияет на выбор его диаметра. Для расчетов необходимо в правую часть (2) ввести коэффициент потокосцепления $K_{\psi} = 1,01-1,03$, учитывающий отличие среднего потока в витках обмотки от наибольшего потока в стержне магнитопровода. В числитель правой части A_1 и знаменатель правой части A_2 (8) и (9) подставляем соответственно K_{ψ}^2 и K_{ψ} . Однако наличие зазоров приводит к увеличению намагничивающей мощности реактора в режиме работы с разомкнутой ВО.

Диапазон изменения мощности реактора (глубина регулирования K_{per}) – отношение его максимальной мощности в режиме КЗ ВО к намагничивающей мощности зазоров (Q_{MFH}) – равен:

$$K_{\text{per}} = \frac{Q_{\text{max}}}{Q_{\text{MFH}}} = \frac{x_{\text{MFH}}}{x_{\text{CO}}} = \frac{S_3}{S_{\text{pac}}} \frac{h_{\text{OK}}}{l_{3\Sigma}},$$
(11)

где S_3 — площадь сечения зазора с учетом «выпучивания» магнитного поля на расстояние, примерно равное высоте единичного зазора l_3 :

$$S_{3} = \frac{\pi}{4} (D_{\text{c.M}} + 2l_{3})^{2}; \qquad (12)$$

 $l_{3\Sigma}$ — суммарная высота зазоров на стержень, м. Влияние размера зазоров на глубину регулирования мощности компенсирующих и токоограничивающих реакторов можно оценить по (11) с учетом (4), (7) и (12) при конкретных значениях их параметров и размеров.

Для канализации магнитного потока в режиме КЗ ВО применяется система магнитных шунтов, конструкция которых аналогична конструкции магнитных систем броневых или ярмовых реакторов [2]. Площадь сечения магнитных шунтов определяется площадью канала рассеяния за вычетом доли магнитного потока рассеяния, входящего в ярма основного магнитопровода.

В бронестержневом однофазном реакторе активное сечение каждого из двух замкнутых шунтов можно оценить как

$$S_{\rm III} = \frac{1}{4} \frac{B_{\rm oc}}{B_{\rm III}} \frac{S_{\rm pac}}{1 + 0.5(S_{\rm pac} / S_{\rm pac.III} - 1)},$$
 (13)

где $B_{\rm oc}$ — индукция осевого поля в канале рассеяния, вычисленная по номинальным ампер-виткам, деленным на высоту окна; $B_{\rm III}$ — наибольшая индукция в стали магнитного шунта; $S_{\rm pac.III}$ — часть площади канала рассеяния, находящаяся в зоне магнитных шунтов (площадь двух кольцевых сегментов).

В целях снижения массы магнитных шунтов и торцевых ярм в компенсирующих и шунтирующих реакторах иногда рассматривают применение некруглых (овальных) обмоток. Для упрощения анализа представим описанный овал стержня фигурой из двух полуокружностей диаметром $D_{\rm c.M}$, соединенных прямыми линиями длиной $\alpha D_{\rm c.M}$. Площадь геометрического сечения стержня

$$S_{\rm c} = \alpha D_{\rm c.M}^2 + \frac{\pi}{4} D_{\rm c.M}^2 = (\alpha + \pi/4) D_{\rm c.M}^2$$

а средний периметр канала рассеяния

$$l_{\rm pc} = \pi (D_{\rm c.M} + 2\Delta_{\rm c-BO} + 2b_{\rm BO} + b_{\rm K}) + 2\alpha D_{\rm c.M}.$$

В этом случае уравнение для определения сторон сечения стержня и высоты окна магнитопровода вместо (7) принимает вид:

$$(1 + 4\alpha / \pi)^{2} A_{1} h_{OK} D_{C.M}^{4} - \left[2\alpha D_{C.M} + \frac{A_{2} / (1 + 4\alpha / \pi)}{(h_{OK} - 2\Delta_{O-R} D_{C.M}^{2})} \right] \times \left(b_{K} + \frac{A_{2} (1 + k_{BO} / k_{CO}) / (1 + 4\alpha / \pi)}{6(h_{OK} - 2\Delta_{O-R}) D_{C.M}^{2}} \right) = 0, \quad (14)$$

где значения A_1 и A_2 из (8).

Очевидно, что при $\alpha = 0$ (сечение круг) указанное уравнение тождественно (7).

Примеры расчета. Исходные данные для оценки параметров однофазных *бронестержневых компенсирующих реакторов*:

Класс напряжения, кВ	35	110	220
Длительно допустимое напряжение фазы СО, кВ	22,2	73,8	145,7
Номинальная мощность фазы, МВА	1,25	10,0	36,7
Электромагнитные нагрузки: В _{СТ.М} , Тл	1,85	1,80	1,75

$J_{\rm BO} = J_{\rm CO}, \ {\rm A/mm}^2$	4,0	3,2	3,0
Коэффициенты заполнения: $k_{\rm cr} \\ k_{\rm BO} / k_{\rm CO}$	0,77 0,49/ 0,45	0,86 0,48/ 0,39	0,87 0,48/ 0,31
Изоляционные промежутки, мм: $b_{\rm K\ min}$ $\Delta_{\rm c-BO}$ $\Delta_{\rm o-R}$	40 20 30	60 25 50*	90 30 50*

*Применен ввод высокого напряжения в середину СО. Класс напряжения нейтрали 35 кВ.

Исходные данные для оценки параметров *двухстержневых токоограничивающих реакторов* для сетей 110 кВ (длительно допустимое напряжение фазы СО 72,8 кВ):

Индуктивное сопротивление, Ом	1,6	3,2
Мощность фазы при КЗ, МВА	3310	1655
Номинальный ток СО, А	1000	1000
Электромагнитные нагрузки: $B_{\rm ct.m}$, Тл $J_{\rm BO} = J_{\rm CO}$, A/мм ²	2,05 3,2	2,05 3,2
Коэффициенты заполнения: <i>k</i> _{ст} <i>k</i> _{BO} / <i>k</i> _{CO}	0,84 0,48/0,39	0,83 0,48/0,39
Изоляционные промежутки, мм: $b_{\rm K \ min} \Delta_{\rm c-BO} \Delta_{\rm o-8}$	60 30 50*	60 30 50*

*Применен ввод высокого напряжения в середину СО. Класс напряжения нейтрали 35 кВ.

Для удобства расчетов при фиксированных значениях исходных данных и $h_{\rm ok}$ представим уравнение (7) в виде двух функций от одного переменного $D_{\rm c.M}$, точка пересечения которых в плоскости действительных чисел является единственным положительным решением этого уравнения:

$$Y_{1} = \frac{A_{1}}{\pi} D_{c.M}^{2};$$

$$Y_{2} = \left[1 + \frac{b_{K} + 2\Delta_{c-BO}}{D_{c.M}} + \frac{A_{2}}{D_{c.M}^{3}(h_{OK} - 2\Delta_{O-R})}\right] \times \left[\frac{b_{K}}{h_{OK}D_{c.M}} + \frac{A_{2}(1 + k_{BO} / k_{CO})}{6h_{OK}D_{c.M}^{3}(h_{OK} - 2\Delta_{O-R})}\right].$$
(15)

Совместное решение (15) удобно искать методом «деления отрезка пополам», задав, например, $|Y_1 - Y_2|_{1000\%} < 0.5\%$

значение
$$\Delta_Y = \left| \frac{Y_1 - Y_2}{Y_1} \right| 100\% \le 0.5\%$$

Определив по (15) основные размеры реактора $(D_{\rm c.M}, h_{\rm OK})$, несложно вычислить его габариты, массу и ориентировочную стоимость по компьютерной программе [4], разработанной на основе полученных аналитических выражений.

49

Рис. 2. Зависимость габаритов, массы ($G_{a.}$) и ориентировочной стоимости ($C_{a.}$) от $D_{c.M}$ для компенсирующих реакторов (a - 35 kB; $\delta - 110 \text{ kB}$; e - 220 kB) и для токоограничивающих 110 кВ (e - индуктивное сопротивление 1,6 Ом; $\partial - 3,2$ Ом)

На рис. 2 представлены указанные зависимости для разных типов реакторов с приведенными ранее исходными данными (штриховыми линиями показаны для конкретного значения $D_{\rm c.M}$ получаемые параметры). Аналогичным методом можно провести расчёт трёхфазного управляемого реактора.

Апробация данного метода электромагнитного расчета проводилась при проектировании компенсирующего реактора типа РКТВДЦ-30000/110 для быстродействующих источников реактивной мощности в электрических сетях Западной Сибири. В соответствии с исходными данными и результатами расчетов были выбраны: диаметр стержня магнитопровода – 0,4 м, высота окна – 1,55 м, ширина канала между ВО и СО – 0,085м. Оптимизационные расчеты по [4] с последующей раскладкой обмоток, уточнением основных и добавочных потерь и проверкой импульсной прочности показали полное соответствие выбранной конструкции техническим требованиям на проектирование при близкой к минимуму полной массе реактора и его стоимости.

Рис. 3. Внешний вид УШРТ 110 кВ

Изготовленные в соответствии с разработанным комплектом конструкторской документации два реактора успешно прошли приемосдаточные испытания и с октября 2009 г. введены в эксплуатацию на подстанциях 220 кВ Когалым и Прогресс МЭС Западной Сибири [5].

Рис. 4. Схема электромагнитной части УШРТ

Общий вид быстродействующего управляемого тиристорными вентилями шунтирующего реактора (УШРТ) представлен на рис. 3 (слева расположена электромагнитная часть, а справа — контейнер с тиристорными вентилями). Электромагнитная часть (рис. 4) конструктивно выполнена в виде трёхфазной системы с магнитными шунтами, расположенными в верхней и нижней частях магнитопровода и исключающими потери в баке и металлических деталях. Особенностью оборудования УШРТ является то, что оно рассчитано на климатическое исполнение УХЛ ($-60 \, \text{°C} \div 40 \, \text{°C}$).

Проведённые заводские и натурные испытания подтвердили заявленные параметры УШРТ:

Номинальное напряжение	
сетевой обмотки	110 кB
вентильной обмотки	10,5 кВ
Номинальная мощность	25,0 Мвар
Длительно допустимая мощность	30,0 Мвар
Напряжение КЗ при 30 Мвар	100,0%
Общие фактические потери, включая потери	
в тиристорных вентилях	0,9%
Ток холостого хода	0,1%
Уровень шума в режиме КЗ	88 дБА

Рис. 5. Динамическая характеристика УШРТ при отключении БСК (быстродействие 40 мс)

Кроме того, подтверждено и высокое быстродействие УШРТ (рис. 5) в замкнутой системе регулирования при коммутации на шинах 110 кВ батареи статических конденсаторов.

__СПИСОК ЛИТЕРАТУРЫ

1. Reichert K., Kauferle J., Glavitsh H. Controllable reactor compensator for more extensive utilization of high voltage systems. – CIGRE, 25 Session, 1974, Report 32-07.

2. Александров Г.Н., Лунин В.П. Управляемые реакторы. – СПб, 2001.

3. Лейтес Л.В. Электромагнитные расчёты трансформаторов и реакторов. – М.: Энергия, 1981.

4. Кочкин В.И., Крайнов С.В., Кубарев Л.П., Федосов Л.Л. Программа электромагнитного расчета трехфазных компенсирующих реакторов трансформаторного типа. — Свидетельство о государственной регистрации программы для ЭВМ № 2009615642 (РФ), 2009.

5. Гвоздев Д.Б., Дроздов А.В., Кочкин В.И. и др. Применение быстродействующих источников реактивной мощности в электрических сетях Западной Сибири. — Электрические станции, 2010, №11.

[20.12.10]

Авторы: Гвоздей Дмитрий Борисович окончил факультет электроснабжения Кузбасского государственного технического университета в 1996 г. В 2000 г. там же защитил кандидатскую диссертацию по специальности «Электротехнические комплексы и системы, включая их управление и регулирование». Зам. председателя правления ОАО «ФСК ЕЭС», главный инженер.

Кочкин Валерий Иванович окончил электроэнергетический факультет (ЭЭФ) Московского энергетического института (МЭИ) в 1962 г. В 1993 г. защитил в МЭИ докторскую диссертацию «Многофункциональные вентильные компенсаторы реактивной мощности для управления режимами работы энергосистем». Зам. научного руководителя ОАО «НТЦ электроэнергетики».

Кубарев Леонид Петрович окончил ЭЭФ МЭИ в 1965 г. В 1975 г. защитил в ВЭИ кандидатскую диссертацию «Исследование, разработка и применение обобщенного метода оптимизации и оценки параметров реакторов тиристорных преобразователей». Главный конструктор НПЦ «Энерком-Сервис».

Федосов Леонид Леонидович окончил электромеханический факультет Коммунарского горнометаллургического института в 1969 г. Зам. главного конструктора НПЦ «Энерком-Сервис».

Черезов Андрей Владимирович окончил Алтайский государственный технический университет по специальности «Электроснабжение» в 1993 г. Зам. председателя правления ОАО «ФСК ЕЭС».