Нелинейное модальное взаимодействие в электроэнергетических системах

Юрий Владимирович Шаров

Аннотация


Обобщены результаты исследований нелинейного модального взаимодействия в электроэнерге­тических системах. Показано, что основным инструментом исследований является метод нор­мальных форм Пуанкаре—Дюлака. Представлен краткий свод приложений применительно к зада­че анализа статической и динамической устойчивости, а также управления статическими ком­пенсаторами реактивной мощности и системными стабилизаторами. Предложена модификация модального подхода к синтезу законов управления на основе нормальных форм.

Ключевые слова


энергосистема; устойчивость; реактивная мощность; системный стабилизатор; модальное взаимодействие; исследование

Полный текст:

PDF

Литература


Веников В.А. Переходные электромеханические процессы в электрических системах. — М.: Высшая школа, 1985, 536 с.

Кузовков Н.Т. Модальное управление и наблюдающие устройства. — М.: Машиностроение, 1976, 184 с.

Gibbard M.J., Pourbeik P., Vowles D.J. Small-signal stability, control and dynamic performance of power systems. — Univ. of Adelaide Press, 2015, 658 p.

Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. — М.: Наука, 1984, 320 с.

Уилкинсон Дж. Алгебраическая проблема собственных значений. — М.: Наука, 1970, 564 с.

Shanechi H.M., Pariz N., Vaahedi E. General nonlinear modal representation of large scale power systems. — IEEE Trans. Power Systems, 2003, vol. 18, pp. 1103-1109.

Vittal V., Bhatia N., Fouad A.A. Analysis of the interarea mode phenomena in power systems following large disturbances. — IEEE Trans. Power Systems, 1991, vol. PS-6, pp. 1515-1521.

Starret S.K., Fouad A.A. Nonlinear measures of mode-machine participation. — IEEE Trans. Power Systems, 1994, vol. 13, pp. 389—394.

Арнольд В.И. Геометрические методы в теории обыкно­венных дифференциальных уравнений. 4-е изд. — М.: МЦНМО, 2012, 384 с.

Seyranian А.Р., Mailybayev A.A. Multiparameter Stability Theory with Mechanical Applications. — New Jersey: World Scientific, 2003, 420 p.

Goriely A. Painlevi analysis and normal forms theory. — Physica D, 2001, vol. 152—153, pp. 124—144.

Майлыбаев А.А., Сейранян А.П. Взаимодействие собст­венных значений при изменении параметров. — Доклады РАН, 2003, т. 393, № 5, c. 609—614.

Seyranian A.P., Kirillov O.N., Mailybayev A.A. Coupling of eigenvalues of complex matrices at diabolic and exceptional points.

— J. Phys. A: Math. Gen., 2005, vol. 38, pp. 1723—1740.

Dobson I. Strong Resonance Effects in Normal Form Analysis and Subsynchronous Resonance. — Bulk Power System Dynamics and Control V. — Onomichi (Japan), 26—31 August 2001.

Auvray V., Dobson I., Wehenkel L. Modifying eigenvalue interactions near weak resonance. — IEEE International Symposium on Circuits and Systems. — Vancouver (Canada), May 2004.

Messina R., Barocio E., Sanchez C. Application of Perturbation Methods to the Analysis of Inter-area Oscillations. — Circuits and Systems (ISCAS ’99). — Proc. of the 1999 IEEE Inter. Symp., 1999, vol. 5, pp. 90—93.

Ni Y., Vittal V., Kliemann W. Investigation of nonlinear modal behavior of HVDC/AC power systems through a scanning tool via normal form technique. — Proc. of IEEE International Symposium on Circuits and Systems, 1997, Paper No. 2P1—16, pp. 945—948.

Thapar J., Vittal V., Kliemann W. Application of the normal form of vector fields to predict inter-area separation in power systems.

— IEEE Trans. Power Systems, 1997, vol. 12, No. 2, pp. 844—850.

Saha S., Fouad A.A., Vittal V., Kliemann W. Stability boundary approximation of a power system using the normal form of vector fields. — IEEE Trans. Power Systems, 1997, vol. 12, No. 2, pp. 797—802.

Xie H., Zhang B., Li Y., Yu G., Zhou D., Yao F., Wang L. A

variable structure trajectory predictive algorithm based on transform for complex exponential time series. — IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian (China), 2005.

Голяндина Н.Э. Метод «Гусеница»-SSA: анализ времен­ных рядов: Учебное пос. — СПб: Изд-во СПбГУ, 2004, 76 с.

Ефимов В.М., Галактионов Ю.К., Шушпанова Н.Ф. Ана­лиз и прогноз временных рядов методом главных компонент. — Новосибирск: Наука, 1988, 70 с.

Jang G., Choo J.-B., Kwon S.-H. Analysis of nonlinear oscillations in KEPCO systems: application of normal forms of vector fields. — IEEE PES Winter Meeting 2000. — Singapore,

, vol. 2, pp. 1509—1512.

Dobson I., Zhang J., Greene S., Engdahl H.. Sauer P.W. Is strong modal resonance a precursor to power system oscillations? — IEEE Trans. on Circuits and Systems, 2001, vol. 48, No. 3, pp. 340

— 349.

Dobson I., Barocio E. Perturbation of weakly resonant power system electromechanical modes. — IEEE Trans. Power Systems, 2005, vol. 20, No. 1, pp. 330—337.

Zhu S., Vittal V., Kliemann W. Analyzing dynamic performance of power systems over parameter space using normal forms of vector fields. Parts I and II. — IEEE Trans. Power Systems,

, vol. 16, No. 3, pp. 451—455.

Betancourt R.J., Barocio E., Arroyo J., Messina A.R. A real normal form approach to the study of resonant power systems. — IEEE Trans. on Power Systems, 2006, vol. 21, No. 1, pp. 431—432.

Мисриханов М.Ш., Ситников В.Ф., Шаров Ю.В. Мо­дальный синтез регуляторов на основе устройств FACTS. — Электротехника, 2007, № 10, с. 22—29.

Mitsubishi Electric Power System Stabilizer (PSS): http://www.meppi.com/Products

Kundur P., Klein M., Rogers G.J., Zywno M.S. Application of power system stabilizers for enhancement of overall system stability. — IEEE Trans. Power Systems, 1989, vol. 4, pp. 614—626.

Lin C.-M., Vittal V., Kliemann W., Fouad A.A. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields. — IEEE Trans. Power Systems, 1996, vol. 11, pp. 781—787.

Jang G., Vittal V., Kliemann W. Effect of nonlinear modal interaction on control performance: use of normal form techniques in control design. — IEEE Trans. Power Systems, 1998, vol. 13, No.

, pp. 401—407.

Lomei H., Sutanto D., Muttaqi K.M., Assili M. A new approach to reduce the non-linear characteristics of a stressed power system by using the normal form technique in the control design of the excitation system. — Industry Appl. Society Annual Meeting, 2015 IEEE, 2015, pp. 1—6.

Barocio E., Messina A.R. Normal form analysis of stressed power systems: incorporation of SVC models. — J. Electrical Power and Energy Systems, 2003, No. 25, pp. 79—90.

Barocio E., Messina A.R. Analysis of nonlinear modal interaction in stressed power system with SVCs. — IEEE PES Winter Meeting, 2002, vol. 2, pp. 1164—1169.

Davarani R.Z, Ghazi R., Pariz N. Nonlinear Analysis of Interaction with SVC in Stressed Power Systems: Effect of SVC Controller Parameters. — Iranian Journal of Electrical & Electronic Engineering, 2013, vol. 9, No. 2, pp. 107—116.

Zou Z.Y., Jiang Q.Y., Cao Y.J., Wang H.F. Normal form analysis of interactions among multiple SVC controllers in power systems. — IEE Proc. Generation, Transmission and Distribution, 2005, vol. 152, No. 4, pp. 469—474.

Acha E., Fuerte-Esquivel C.R., Ambriz-Perez H., Angeles-Camacho C. FACTS: Modelling and Simulation in Power Networks. — John Wiley & Sons, 2004, 420 p.

Hingorani N.G., Gyugyi L. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. — IEEE Press, 2000, 432 p.

Zou Z.Y., Jiang Q.Y., Cao Y.J., Wang H.F. Investigation of Interactions among the Multi-control Channels of UPFC using Normal Forms of Vector Fields. — The 39th Inter. Univ. Power Engineering Conf., 2004, vol. 1, pp. 343—347.

Zhou E. Z., Malik O.P., Hope G.S. Theory and method for Selection of Power System Stabilizer Location. — IEEE Trans. Power Systems, 1991, vol. 6, pp. 170 — 176.

Zhou E.Z., Malik O.P., Hope G.S. Design of stabilizer for a multimachine power system based on the sensitivity of PSS effect. — IEEE Trans. on Energy Conversion, 1992, vol. 7, No. 3, pp. 606 — 613.


Ссылки

  • На текущий момент ссылки отсутствуют.