Несмотря на отрицательные рецензии И.П. Кужекина и решение секции техники высоких напряжений редколлегии от 12 мая 2010 г. о нецелесообразности публикации статей «Математическая модель системы «канал молнии—линия электропередачи» и «Математическая модель системы «канал молнии—протяженный заземлитель» (авторы: Карякин Р.Н., Лосев В.Г.), редакция, идя навстречу настойчивым просьбам авторов, посчитала возможным опубликовать в разделе «Сообщения» статью «Математическая модель системы «канал молнии—линия электропередачи».

Решение о публикации только одной статьи обусловлено как идентичностью подходов авторов к решению смежных задач в указанных статьях, так и похожими критическими замечаниями рецензента по их содержанию.

Учитывая резкое расхождение в оценке статей авторами и рецензентом, редакция наряду со статьей предлагает читателям ознакомиться с основными замечаниями рецензии.

Математическая модель системы «канал молнии—линия электропередачи»

КАРЯКИН Р.Н., ЛОСЕВ В.Г.

Предложена математическая модель системы «канал молнии—линия электропередачи» при отрицательном нисходящем коротком разряде (главная стадия разряда), устанавливающая условия, при которых канал молнии может рассматриваться в качестве «генератора тока».

Ключевые слова: линия электропередачи, канал молнии, сопротивление, импульс тока, фазовая скорость, математическая модель

Цепь разряда молнии образует систему, включающую связанные между собой в «точке атаки» две составные части: канал молнии (КМ) и подверженную разряду линию электропередачи (ЛЭП).

Главная стадия разряда молнии состоит из двух одновременно протекающих процессов: разряда положительного заряда ЛЭП Q^+ , вызывающего нейтрализацию отрицательного заряда КМ, и разряда отрицательного заряда канала Q^- на ЛЭП, вызывающего нейтрализацию ее положительного заряда. При этом протекающий в системе КМ—ЛЭП ток (i(x,y,t) достигает максимального значения в точке атаки A(x=0, y=0) в момент времени $t_{0\min}$ и затухает по мере удаления от этой точки (рис. 1).

В общем случае ток i(z,t) и потенциал u(z,t) длинной линии, являющейся моделью как канала молнии, так и линии электропередачи, связаны дифференциальными уравнениями [1 - 7]:

$$-\frac{\partial u(z,t)}{\partial z} = L\frac{\partial i(z,t)}{\partial t} + r_{a}i(z,t); \ddot{\ddot{y}}$$

$$-\frac{\partial i(z,t)}{\partial z} = C\frac{\partial u(z,t)}{\partial t} + \frac{1}{r_{\Pi}}u(z,t)\ddot{\ddot{y}}$$
(1)

A mathematical model of the «lightning channel — power line» system for a negative descending short discharge (the main stage of discharge) is proposed, which establishes the conditions under which the lightning channel can be regarded as a current generator.

Key words: power line, lightning channel, impedance, current impulse, phase velocity, mathematical model

Рассмотрим разряд на длинную линию заряда Q. Граничные условия задачи в этом случае [8]:

$$i_0(z=0,t) = d(t)Q,$$
 (2)

где d(t) — импульсная функция Дирака [8].

Решая систему уравнений (1) при граничном условии (2), получим ток длинной линии в виде:

Рис. 1. Цепь разряда молнии на линию электропередачи

или

$$i(z,t) = Qe^{-\frac{1}{2}} \int_{0}^{1} \int_{0}^{\infty} \int$$

$$+ \underset{\hat{\mathbb{e}}}{\text{m}} \underbrace{\hat{\mathbb{e}}}_{l \xi}^{\hat{\mathbb{e}}} \underset{\hat{\mathbb{e}}}{\text{m}} \sqrt{t^2 - \frac{z^2}{u^2}} \frac{\ddot{\mathbb{e}}}{\dot{\mathbb{e}}} \frac{t}{\sqrt{t^2 - \frac{z^2}{u^2}}} - I_{0 \xi}^{\underbrace{\hat{\mathbb{e}}}} \underset{\hat{\mathbb{e}}}{\text{m}} \sqrt{t^2 - \frac{z^2}{u^2}} \frac{\ddot{\mathbb{e}}}{\dot{\mathbb{e}}}$$

$$\begin{array}{ccc}
& & & z\ddot{0}\ddot{i} \\
& & +\ddot{0}\dot{t} - & -\dot{\dot{y}}, \\
& \dot{e} & udn
\end{array} (3a)$$

где

$$m_1 = \frac{1}{2} u^2 (r_a C - \frac{L}{r_{r_1}}); \tag{4}$$

$$m_2 = \frac{1}{2} u^2 (r_a C + \frac{L}{r_{\Pi}})$$
 (5)

 $I_0(w),\ I_1(w)$ — модифицированные функции Бесселя нулевого и первого порядка соответственно; —

$$\overset{\mathcal{R}}{\overset{\circ}{\text{e}}} - \overset{z \overset{\circ}{\overset{\circ}{\text{c}}}}{\overset{\circ}{\text{e}}} - \overset{\circ}{\text{единичная}} \quad \text{функция} \quad \text{(при } t\text{-}z/\text{u} £ 0$$

$$H_{\mathbf{Q}}^{\underbrace{\mathcal{Z}}} \stackrel{\ddot{\mathbf{Q}}}{\leftarrow} 0$$
, при t - z / u> 0 $H_{\mathbf{Q}}^{\underbrace{\mathcal{Z}}} \stackrel{\ddot{\mathbf{Q}}}{\leftarrow} 1$; u — фазовая

скорость волны тока в длинной линии.

Из (3а) следует, что ток длинной линии, в общем случае, является суммой двух волн: волны импульса и волны последействия. Амплитуды обеих волн затухают по экспоненциальному закону. Волну последействия можно рассматривать как расплывающийся вдоль линии хвост волны импульса. Волна импульса искажается в результате рассеивания энергии в активных (продольном и поперечном) сопротивлениях линии ($r_{\rm a}$ и $r_{\rm II}$). Волна последействия расплывается из-за тормозящего действия тех же сопротивлений.

Из анализа (4) и (5) следует, что если

$$(r_{\rm a}C)_{\rm min} >> \stackrel{\approx}{\xi} \frac{L}{r_{\rm II}} \stackrel{\ddot{o}}{\stackrel{=}{\phi}}_{\rm max}, \qquad (6)$$

то должна быть принята модель $(C, r_{\rm a})$, для которой

$$m = m_2 = m = u^2 r_a C / 2$$
 (7)

И

$$i(z,t) = Qe^{-\frac{1}{2}u^2r_aCt}\frac{\partial}{\partial t} - \frac{1}{2}u^2r_aC\frac{\partial}{\partial t}$$

или [9]

$$i(z,t) = \frac{1}{2\sqrt{p}} Q \sqrt{Cr_{a}} z t^{-\frac{3}{2}} e^{-\frac{1}{4}Cr_{a}} \frac{z^{2}}{t}.$$
 (9)

Если

$$(r_a C)_{\text{max}} << (L/r_{\Pi})_{\text{min}},$$
 (10)

то должна быть принята модель (L, r_{Π}) , для которой

$$m = -u^2 (L/r_{\Pi})/2;$$
 (11)

$$m_2 = u^2 (L/r_{_{\Pi}})/2$$
 (12)

И

$$i(z,t) = Qe^{-\frac{1}{2}u^{2}\frac{L}{r_{\Pi}}t_{\mathcal{C}}^{2}\frac{\partial}{\partial t} + \frac{1}{2}u^{2}\frac{L}{r_{\Pi}}\frac{\ddot{\partial}}{\dot{\phi}},$$

$$\stackrel{\dot{e}}{\stackrel{\circ}{e}} I_{0}^{\mathcal{C}} - \frac{1}{2}u^{2}\frac{L}{r_{\Pi}}\sqrt{t^{2} - \frac{z^{2}}{u^{2}}\frac{\ddot{\partial}}{\dot{\phi}}H_{\mathcal{C}}^{2}t - \frac{z\ddot{\partial}\dot{u}}{u\dot{\phi}\dot{u}}}$$

$$\stackrel{\dot{e}}{\stackrel{\circ}{e}} I_{0}^{\mathcal{C}} - \frac{1}{2}u^{2}\frac{L}{r_{\Pi}}\sqrt{t^{2} - \frac{z^{2}}{u^{2}}\frac{\ddot{\partial}}{\dot{\phi}}H_{\mathcal{C}}^{2}t - \frac{z\ddot{\partial}\dot{u}}{u\dot{\phi}\dot{u}}}$$

$$(13)$$

или [10]

$$i(z,t) = \frac{1}{2\sqrt{p}}Q\sqrt{\frac{L}{r_{\Pi}}}zt^{-\frac{3}{2}}e^{-\frac{1}{4}\frac{L}{r_{\Pi}}\frac{z^{2}}{t}}.$$
 (14)

Если неравенства (6) и (10) не выполняются, то должна быть оставлена исходная модель (L, $r_{\rm a}$, C, $r_{\rm II}$).

Для частного случая

$$r_a C = L / r_{\Pi} \quad (\mathbf{m} = 0) \tag{15}$$

и, как следует из (3а),

$$i(z,t) = \bigoplus_{\dot{\mathbf{e}}}^{\mathbf{e}} t - \underbrace{z\ddot{\mathbf{o}}}_{\mathbf{u}\mathbf{o}} \underbrace{Qe}^{-\frac{1}{2}\mathbf{u}^{2}(r_{\mathbf{a}}C + \frac{L}{r_{\mathbf{n}}})t}$$
(16)

 затухающий импульс тока распространяется по линии со скоростью и без искажения. Волна последействия отсутствует.

Для другого частного случая

$$r_{\rm a}=0, \ r_{\rm \Pi}=$$

и, как следует из того же уравнения (3а),

$$i(z,t) = \bigoplus_{i=1}^{\infty} t - \frac{z\ddot{0}}{1+Q}$$
 (17)

импульс тока распространяется по линии со скоростью

$$u = \frac{1}{\sqrt{IC}}, (u = c)$$
 (18)

без искажения и без затухания. Волна последействия отсутствует.

Значения параметров канала молнии для рассматриваемой главной стадии разряда ($L=2,3 \times 10^{-6}$ Гн/м; $C=7 \times 10^{-12}$ Ф/м) по данным эксперимен-

тальных исследований, обобщенных в [1], приведены далее:

Температура 3 30000 K Проводимость $^{\sim}10^4$ См/м Радиус канала $^{\sim}0,03$ м Активное сопротивление r_a $^{\sim}0,035$ Ом/м

Для канала молнии во время рассматриваемой (главной) стадии разряда ($r_{\rm a\,min}$ 3 0,035 Oм/м; $C_{\rm min} > 2.5 \,\rm M\,0^{-12}$ Ф/м; $L_{\rm max} < 2.5 \,\rm M\,0^{-6}$ Гн/м; $r_{\rm II} = 2.5 \,\rm M\,0^{-14}$ Омжи) неравенство (6) выполняется:

$$0.875 \times 10^{-13} \text{ c} \times \text{m}^{-2} > 10^{-20} \text{ c} \times \text{m}^{-2}$$
.

Следовательно, каналу молнии соответствует расчетная модель (C, r_a) [9].

В общем случае для линии электропередачи справедлива модель (C, $r_{\rm a.r.}$, $C_{\rm J}$, $r_{\rm II}$), для которой условие (15), как правило, не выполняется. Поэтому применительно к рассматриваемой цепи разряда молнии, представленной на рис. 1, выражение волны тока каждого плеча линии при прямом ударе в нее молнии в момент t=0 в точку с координатой x=0 имеет вид:

$$i(x,t) = \frac{1}{2}Qe^{-\frac{t}{1}} I_{0}^{2} \operatorname{m}_{2} t \int_{0}^{1} I_{0}^{2} \operatorname{m}_{2} t \int_{0}^{2} \operatorname{m}_{2} t \int_{0}^{2}$$

где [9]

$$\overset{\text{e. }}{\underset{\stackrel{\cdot}{\text{e. }}}{\text{e. }}} = 2t_0 \underset{\stackrel{\cdot}{\text{min}} \overset{\cdot}{\underset{\stackrel{\cdot}{\text{e. }}}{\text{e. }}}}{\text{e. }} = \frac{x \overset{\cdot}{\overset{\cdot}{\text{o. }}}}{\overset{\cdot}{\text{o. }}} = e^{-2t_0 \underset{\stackrel{\cdot}{\text{min}} \overset{\cdot}{\underset{\stackrel{\cdot}{\text{e. }}}{\text{e. }}}}{\text{min}} = \frac{x \overset{\cdot}{\overset{\cdot}{\text{o. }}}}{\overset{\cdot}{\text{o. }}}}{\overset{\cdot}{\text{o. }}} ; (19)$$

$$t_{0\min} = C_{\rm K} r_{\rm a.K} / 2k^2;$$
 (20)

$$m = u^2 (r_{a.\pi} C_{\pi} - \frac{L}{r_{\pi}})/2;$$
 (4a)

$$m_2 = u^2 (r_{a,\pi} C_{\pi} + \frac{L}{r_{\pi}})/2;$$
 (5a)

 $r_{\rm a.K}, C_{\rm K}, k$ — параметры модели канала молнии: $(r_{\rm a.K}, C_{\rm K}e^{ky})$ — активное сопротивление (Омжи) и емкость (Ф/м) и вещественное положительное число, характеризующее изменение распределенной

емкости чехла $C_{y_{\rm K}}(y)$ по высоте канала в направлении вертикальной оси y (м $^{-1}$) соответственно.

Таким образом, волна тока каждого плеча ЛЭП, подверженной удару молнии, в общем случае является суммой двух волн: волны половины импульса тока КМ и волны последействия. Амплитуды обеих волн затухают по экспоненциальному закону. Волна импульса искажается в результате рассеивания энергии в активных (продольном и поперечном) сопротивлениях ЛЭП $(r_{\rm a.n}, r_{\rm n})$. Волна последействия (хвост волны импульса) расплывается вдоль ЛЭП из-за тормозящего действия тех же сопротивлений.

Из четырех основных параметров ЛЭП $(L, C_{\Lambda}, r_{\text{а.л}}, r_{\Pi})$ три первых параметра остаются неизменными, а параметр r_{Π} , определяемый состоянием линейной изоляции и процессами коронирования проводов, в условиях эксплуатации может изменяться в широких пределах. Для упрощения вычислений в дальнейшем будем рассматривать один из возможных случаев, когда

$$r_{\Pi} \gg \frac{L}{r_{\text{a.n}}C_{\Pi}},\tag{15a}$$

что соответствует условию (15).

В частности, для контактной сети электрифицированных железных дорог переменного тока ($r_{\rm a}=0.125\,{\rm M}\,{\rm O}^{-3}$ Ом/м; $C=16\,{\rm M}\,{\rm O}^{-12}$ Ф/м; $L=0.75\,{\rm M}\,{\rm O}^{-6}$ Гн/м; $r_{\rm II}=0.375\,{\rm M}\,{\rm O}^{9}$ Омжи) условие (15) приобретает вид

$$0.125 \times 10^{-3} \times 16 \times 10^{-12} = \frac{0.75 \times 10^{-6}}{0.375 \times 10^{9}}.$$

Применительно к рассматриваемой цепи разряда молнии, представленной на рис. 1, выражение волны тока линии при прямом ударе в нее молнии в момент t=0 в точку с координатой x=0:

$$i_{\Pi}(x,t) = \frac{1}{2} \stackrel{\text{de}}{\stackrel{\text{de}}{\text{e}}} t - \frac{x \ddot{0}}{u \cancel{\varnothing}} Q e^{-\frac{1}{2} u^{2} (r_{\text{a.}\Pi} C_{\Pi} + \frac{L}{r_{\Pi}})t}$$
(21)

или с учетом формул (19) и (20)

$$i_{\Pi}(x,t) = \frac{1}{2} Q \frac{1}{k^{2}} r_{\text{a.K}} C_{K_{\mathbf{e}}^{\bullet}}^{\bigotimes e} t - \frac{x \ddot{\Theta}}{u \dot{\varnothing}}^{2} e^{-\frac{1}{k^{2}} r_{\text{a.K}} C_{K_{\mathbf{e}}^{\bullet}}^{\bigotimes e} t - \frac{x \ddot{\Theta}}{u \dot{\varnothing}}^{2}} \cdot e^{-\frac{1}{2} u^{2} (r_{\text{a.\Pi}} C_{\Pi} + \frac{L}{r_{\Pi}})t},$$
(22)

где L, C_{π} — индуктивность и емкость пораженных фазных проводов линии (на единицу длины) соответственно; $r_{\rm a.\pi}$, r_{π} — активное и переходное сопротивления проводов (на единицу длины) соответственно.

Переход от КМ к ЛЭП, сопровождающийся резким изменением формы волны напряжения u(t) в точке атаки, становится возможным при условии последовательного включения в этой точке между КМ и ЛЭП согласующего сопротивления Z_A , определяемого выражением

$$Z_A = \frac{u_{\pi}(x=0,t) - u_{\kappa}(y=0,t)}{i(x=0,y=0,t)},$$
 (23)

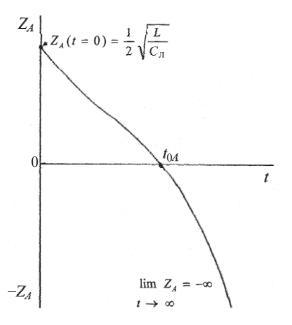
где

$$u_{\pi}(x=0,t) = \sqrt{\frac{L}{C_{\pi}}} i_{\pi}(x=0,t);$$
 (24)

$$i_{\pi}(x=0,t) = \frac{1}{2} d(t) Q e^{-\frac{1}{2} u^2 (r_{a.\pi} C_{\pi} + \frac{L}{r_{\pi}})t};$$
 (21a)

$$i_0(x=0,y=0,t) = d(t)Q;$$
 (2a)

 $u_{K}(x=0,t)$ — потенциал канала молнии в точке A определяется формулой [9]:


$$u_{K}(y=0,t) = Q \frac{1}{k} r_{a.K} t^{-1} e^{-2t_0 \min^{\bar{t}}};$$
 (25)

$$t_{0\min} = r_{aK} C_K / 2k^2.$$
(26)

Подставляя формулы (2a), (21), (24)—(26) в (23), получим:

$$Z_{A} = \frac{1}{2} \sqrt{\frac{L}{C_{\Pi}}} e^{-\frac{1}{2} u^{2} (r_{\text{a.}\Pi} C_{\Pi} + \frac{L}{r_{\Pi}})t} - \frac{k}{C_{\kappa}} t.$$
 (27)

Из анализа (27) следует, что согласующее сопротивление, выполняющее роль вентиля, пропус-

Рис. 2. Зависимость согласующего сопротивления $Z_{\mathcal{A}}$ от времени t

кающего ток i_A (x=0, y=0,t) без искажения и одновременно «закручивающего» потенциал, принимает значения (рис. 2):

при t=0

$$Z_A = \frac{1}{2} \sqrt{L/C_{\text{II}}};$$

при t, равном $t_{0A} = \frac{C_K}{k} \sqrt{\frac{L}{C_{\pi}}} e^{-\frac{1}{2}u^2(r_{a.\pi}C_{\pi} + \frac{L}{r_{\pi}})t_{0A}}$

$$Z_A = 0;$$

при $t \otimes Y = Z_A \otimes Y$.

Уравнения, описывающие предложенную математическую модель системы КМ—ЛЭП, электрическая схема замещения которой представлена на рис. 3, имеют вид:

$$-\frac{\partial u_{K}(y,t)}{\partial y} = r_{a.K}i(y,t); \qquad \ddot{\ddot{\mathbf{u}}}$$

$$-\frac{\partial i(y,t)}{\partial y} = C_{K}e^{ky}\frac{\partial u_{K}(y,t)}{\partial t}; \qquad \ddot{\ddot{\mathbf{u}}}$$

$$-\frac{\partial u_{\Pi}(x,t)}{\partial x} = L\frac{\partial i_{\Pi}(x,t)}{\partial t} + r_{a.\Pi}i_{\Pi}(x,t); \qquad \ddot{\ddot{\mathbf{u}}}$$

$$-\frac{\partial i_{\Pi}(x,t)}{\partial x} = C\frac{\partial u_{\Pi}(x,t)}{\partial t} + \frac{1}{r_{\Pi}}u_{\Pi}(x,t); \qquad \ddot{\ddot{\mathbf{u}}}$$

$$i(x=0,y=0,t) = d(t)Q; \qquad \ddot{\ddot{\mathbf{u}}}$$

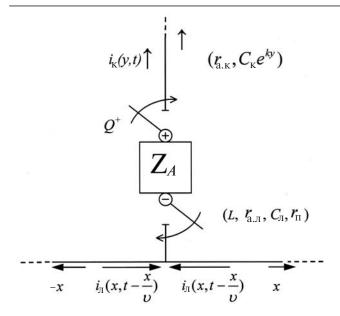
$$Z_{A} = \frac{1}{2}\sqrt{\frac{L}{C_{\Pi}}}e^{-\frac{1}{2}\mathbf{u}^{2}(r_{a.\Pi}C_{\Pi} + \frac{L}{r_{\Pi}})t} - \frac{k}{C_{K}}t\ddot{\ddot{\mathbf{u}}}$$

Первые два уравнения, описывающие распространение волн импульсов тока и напряжения в КМ — активном четырехполюснике, являются автономными. Решение этих уравнений, данное в [9], в виде выражений для волн тока

$$i_{K}(y,t) = 2Qt_{0}t^{-2}e^{-2t_{0}t^{-1}}$$
 (29)

и напряжения

$$u_{K}(y,t) = \frac{1}{k} r_{a.K} Q t^{-1} e^{-2t_0 t^{-1}},$$
 (30)


где

$$t_0 = C_{K} r_{a.K} e^{ky} / 2k^2 \tag{31}$$

не зависит от параметров ЛЭП.

Из анализа (31) следует, что фазовая скорость распространения восходящей волны тока вдоль канала молнии

$$u_i = 2 \frac{k^2}{C_K r_{a.K}} y e^{-ky},$$
 (32)

Рис. 3. Электрическая схема замещения системы KM—ЛЭП (разряд диполя с внутренним сопротивлением Z_4)

а фазовая скорость распространения волны потенциала, как это следует из (30),

$$u_u = \frac{k^2}{C_K r_{a.K}} y e^{-ky}.$$

Решение второй пары уравнений (28) при том же граничном условии в виде (24) и (21а) означает, что рожденная в КМ волна импульса тока i(x=0,y=0,t)=d(t)Q распространяется по фазным проводам ЛЭП (пассивный четырехполюсник) без искажения в виде бегущей с постоянной скоростью и (u=1/ $\sqrt{LC_{_{\Pi}}}$) затухающей волны импульса тока (22).

В заключение следует заметить, что выражение (29), не учитывающее конечной длины канала молнии, справедливо для последующих разрядов и триггерных молний. Для получения результирующей волны тока в точке атаки при первом коротком нисходящем отрицательном разряде необходимо к основной волне тока (29) добавить отраженные волны [11, 12]. Поэтому общее решение для результирующей волны тока следует искать в виде

где

$$i_m(t) = 2Qt_0H_m(t-m\mathsf{D}t)(t-m\mathsf{D}t)^{-2}e^{-2t_0(t-m\mathsf{D}t)^{-1}}$$
 ,
$$e^{-2mkh}; \ H_m(t) - \text{единичная функция:}$$

$$H_0(t) = 0 \ \text{при } t \, \mathfrak{L}0\ddot{\mathbf{u}}$$

$$H_0(t) = 1 \ \text{при } t > 0\dot{\mathbf{p}}$$

$$H_m(t-m\mathsf{D}t)=0$$
 при $t-m\mathsf{D}t\, \pounds\, 0$ ü $H_m(t-m\mathsf{D}t)=1$ при $t-m\mathsf{D}t>0$ p $m>1;$ $t_{0m}=t_0e^{2mkh}$; $\mathsf{D}t=2h\,/\,\,\mathrm{u_{cp}}$; $\mathsf{u_{cp}}-\,\,\mathrm{средняя}\,\,\mathrm{фазо-}$ вая скорость волны тока вдоль канала, м/с; $h-\,\,\mathrm{вы-}$ сота «дна» облака, м.

Таким образом, выражение результирующего тока в основании канала при первом коротком нисходящем отрицательном разряде запишется в виде

Для инженерных расчетов волны тока в основании канала можно ограничиться при $h^3 3 \times 10^3$ м двухчленным выражением:

$$\begin{split} i_{_{\rm K}}(y=0,t) &= 2Qt_0[H_0(t)t^{-2}e^{-2t_0t^{-1}} + \\ &+ H_1(t-\ \mathsf{D}t)(t-\ \mathsf{D}t)^{-2}e^{-2t_{01}(t-\ \mathsf{D}t)^{-1}}e^{-2kh}], \end{split}$$

что в соответствии с формулой (21) позволяет рассчитать волну импульса тока в линии:

$$\begin{split} i_{\Pi}(x,t) &= Q_{t_0} \hat{\mathbf{e}}^{\dot{\mathbf{e}}} H_0 \hat{\mathbf{e}}^{\dot{\mathbf{e}}t} - \frac{x \ddot{\mathbf{e}}}{\mathbf{u} \dot{\mathbf{e}}}^{\dot{\mathbf{e}}t} - \frac{x \ddot{\mathbf{e}}}{\mathbf{u} \dot{\mathbf{e}}}^{\dot{\mathbf{e}}} - \frac{x \ddot{\mathbf{e}}}{\mathbf{u} \dot{\mathbf{e}}}^{\dot{\mathbf{e}}} - \frac{x \ddot{\mathbf{e}}}{\mathbf{u} \dot{\mathbf{e}}}^{\dot{\mathbf{e}}t} - \frac{x \ddot{\mathbf{e}}}{\mathbf{u} \dot{\mathbf{e}}}^{\dot{\mathbf{e}}t} - \frac{x \ddot{\mathbf{e}}}{\mathbf{u} \dot{\mathbf{e}}}^{\dot{\mathbf{e}}t} + \\ &+ H_1(t - \mathsf{D}t - \frac{x}{\mathsf{u}})(t - \mathsf{D}t - \frac{x}{\mathsf{u}})^{-2} e^{-2t_{01} \min(t - \mathsf{D}t - \frac{x}{\mathsf{u}})^{-1}} \\ &\cdot e^{-2kh} \quad \dot{\mathbf{u}}^{\dot{\mathbf{e}}t} - \frac{1}{2} \mathbf{u}^2 (r_{\mathbf{a}.\pi} C_{\pi} + \frac{L}{r_{\pi}})t \\ &\cdot e^{-2kh} \quad \dot{\mathbf{u}}^{\dot{\mathbf{e}}t} - \frac{1}{2} \mathbf{u}^2 (r_{\mathbf{a}.\pi} C_{\pi} + \frac{L}{r_{\pi}})t \\ \end{split}$$

Детальное рассмотрение формы волны импульса тока в основании канала молнии с учетом отраженных от «дна» облака волн дает уточненное выражение для тока канала молнии:

и, следовательно,

и, следовательно,
$$i_{\pi}(x,t) = \frac{1}{2\sqrt{p}}Q\sqrt{r_{\text{a.K}}C_{\text{K}}}e^{\frac{1}{2}kh}\frac{h}{\overset{\text{def}}{e}t^{-\frac{1}{2}kh}}\frac{h}{\overset{\text{def}}{e}t^{-\frac{1}{2}kh}}$$

$$\stackrel{\stackrel{\stackrel{\circ}{}}{}}{\stackrel{\stackrel{\circ}{}}{}}\frac{1}{\overset{\circ}{e}}e^{\frac{1}{2}kh}-1)\stackrel{\stackrel{\circ}{}}{\stackrel{\circ}{e}}\frac{1}{\overset{\circ}{e}}e^{\frac{1}{2}kh}-1)+n\overset{\stackrel{\circ}{}}{\overset{\circ}{u}}$$

$$\stackrel{\stackrel{\circ}{}}{\stackrel{\circ}{}}\frac{1}{\overset{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{}}\frac{\overset{\circ}{u}}{\overset{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2}kh}-1\overset{\stackrel{\circ}{}}{\stackrel{\circ}{e}}e^{\frac{1}{2$$

или

Выражение (33) дано в виде двух составляющих: основного импульса (падающая волна) и суммы бесконечного ряда отраженных волн. Крутизна фронта импульса $i_{\pi}(x,t)$ и его амплитуда определяются аналогичными параметрами первой состав-

$$\begin{split} i_{_{\Pi}}(x,t) &= \frac{1}{4\sqrt{\mathsf{p}}} \mathcal{Q}\Gamma \frac{h}{\overset{\bullet}{\bigotimes_{c} t^{-}} \frac{x \, \ddot{\wp}^{3/2}}{\mathsf{q} \, \dot{\wp}}} \, \mathsf{e}(\mathsf{e}\text{--}1) \, , \\ & \cdot e^{-\frac{1}{4} \mathsf{e}^{2} \, (\mathsf{e} \, \, 1)^{2} \, \Gamma^{2} \, h^{2} \, \overset{\bullet}{\bigotimes_{c} t^{-}} \frac{x \, \ddot{\wp}}{\mathsf{q} \, \dot{\wp}} \! e^{-\frac{1}{2} t} \, , \\ \mathsf{где} \, & \overset{\bullet}{\mathsf{e}} = \frac{1}{2} k h \, ; \quad \Gamma = \sqrt{r_{\mathsf{a}.\mathsf{K}} C_{_{\mathsf{K}}}} \, ; \quad \mathsf{m}_{2} = \mathsf{u}^{2} \, (r_{\mathsf{a}.\mathsf{J}} C_{_{\mathsf{J}}} + \frac{L}{r_{_{\mathsf{T}}}}) / 2 \, . \end{split}$$

Переходное сопротивление пораженных фазных проводов ЛЭП r_{Π} должно определяться с учетом потерь на корону.

Выводы. 1. Принципиальным отличием разряда КМ на фазные провода ЛЭП от разрядов КМ на прочие сооружения (опоры ЛЭП и заземленные на тяговые рельсы опоры контактной сети электрифицированных железных дорог, подземные и наземные трубопроводы, технологические и кабельные эстакады, обсадные трубы буровых скважин, подземные силовые кабели и кабели связи, протяженные заземляющие устройства) является отсутствие заметного влияния волновых параметров подверженных прямому удару молнии фазных проводов ЛЭП на электромагнитные процессы в канале молнии. Вследствие этого обстоятельства при ПУМ в фазные провода ЛЭП молнию можно рассматривать в качестве идеального генератора тока, форма и амплитуда волны которого не зависят от волновых параметров фазных проводов ЛЭП.

- 2. Сформировавшаяся в канале молнии волна импульса тока d(t)O распространяется по пораженным фазным проводам ЛЭП с постоянной скоростью и. Волна тока каждого плеча ЛЭП является суммой двух волн: волны половины импульса тока КМ и волны последействия. Амплитуды обеих волн затухают по экспоненциальному закону с декрементом затухания, зависящим от электрических параметров пораженных фазных проводов.
- 3. Волна импульса искажается в результате рассеивания энергии в активных (продольном и поперечном) сопротивлениях ЛЭП ($r_{\rm a.l.}$ и $r_{\rm l.l.}$). Волна последействия (хвост волны импульса) расплывается вдоль ЛЭП из-за тормозящего действия тех же сопротивлений. В частном случае, когда выполняется условие $r_{_{\Pi}}$ » $L / r_{_{\mathrm{a. I}}} C_{_{\mathrm{J}}}$, затухающая волна импульса тока КМ распространяется по пораженным фазным проводам ЛЭП без заметного искажения и не сопровождается волной последействия.
- 4. Установленные закономерности позволяют решить и обратную задачу: определить погонную утечку изоляции контактной сети или ЛЭП по деформации волны импульса тока за время ее пробега по рассматриваемому участку сети (линии).

СПИСОК ЛИТЕРАТУРЫ

- 1. Rakov V.A. Some inferences on the propagation mechanisms of dart leaders and return strokes. - Journal of Geophysical Research, 27 January 1988, vol. 103, № D2.
- 2. Горин Б.Н. Математическое моделирование главной стадии молнии. – Электричество, 1985, № 4.
- 3. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. - М.: Физматлит, 2001.
- 4. Александров Г.Н. Молния и молниезащита. СПб: Изд-во Политехнического университета, 2007.
- 5. Лоханин А.К. Вопросы координации изоляции электрооборудования высокого напряжения для сетей переменного тока в мировой практике. – Электричество, 1997, № 5.
- 6. Кадомская К.П., Рейхердт А.А. Моделирование волны тока молнии при расчетах грозоупорности электрических сетей. Электричество, 2006, № 11.
- 7. Борисов Р.К., Смирнов М.Н., Коломиец Е.В., Янковский Б.Д. Экспериментальные исследования импульсных характери-

стик заземляющих устройств. — Сб. докладов Второй Российской конф. по заземляющим устройствам/Под ред. Ю.В. Целебровского. — Новосибирск: Сибирская энергетическая академия. 2005.

- 8. **Карякин Р.Н.** Методика расчета основных параметров нисходящего отрицательного разряда молнии. Электричество, 2006, № 11.
- 9. **Карякин Р.Н., Лосев В.Г.** Форма волны тока молнии в контактной сети. Электричество, 2008, № 11.
- 10. **Карякин Р.Н., Лосев В.Г.** Удар молнии в протяженный неоднородный заземлитель. Электричество, 2009, № 4.
- 11. **Карякин Р.Н., Лосев В.Г.** Математическая модель канала молнии. Электричество, 2009, № 10.
- 12. **Карякин Р.Н., Лосев В.Г.** Анализ инженерных моделей главной стадии молнии. Электричество, 2012, \mathbb{N}_2 3.

Авторы: **Карякин Рудольф Николаевич** окончил факультет электрификации железных дорог Московского электромеханического института инжене-

ров железнодорожного транспорта в 1952 г. В 1976 г. защитил докторскую диссертацию «Исследование электромагнитных процессов в тяговых сетях переменного тока (в связи с проблемами электробезопасности)» во Всесоюзном научно-исследовательском институте железнодорожного транспорта. Главный научный сотрудник отдела комплексной защиты электроустановок Научно-исследовательского института электромонтажной технологии.

Лосев Виктор Григорьевич окончил факультет электрификации железных дорог Московского института инженеров железнодорожного транспорта в 1983 г. В 2007 г. защитил кандидатскую диссертацию «Повышение эффективности молниезащиты тяговых сетей переменного тока» в Московском государственном университете путей сообщения. Заместитель начальника Департамента электрификации и электроснабжения ОАО «РЖД».

Рецензия на статью Карякина Р.Н. и Лосева В.Г. «Математическая модель системы «канал молнии—линия электропередачи»

Прежде всего, следует отметить, что не указана цель статьи, не сказано, какая актуальная задача решается, как эта задача решена в других публикациях, какие проблемы остаются нерешенными. Создается впечатление, что материал статьи — бессмысленные математические упражнения авторов.

Что касается ударов молнии в линии электропередачи, то имеется множество публикаций, в которых проанализированы электромагнитные процессы, вызванные движением канала разряда цилиндрической формы, перпендикулярно и наклонно ориентированного к поверхности земли. В литературе приведены тысячи осциллограмм токов молнии, дано их обобщение. Имеются также надежные данные о движении фронта импульса тока по каналу молнии и по проводам ЛЭП. Все эти данные авторами игнорируются.

Авторы неверно представляют формирование импульса тока молнии. Они определяют его суперпозицией разрядов зарядов, накопленных в канале молнии и индуктированных на проводах ЛЭП. Это принципиально неверно. Во-первых, не существует понятия «разряда» заряда (разряда количества электричества). Одним из фундаментальных законов природы является закон сохранения заряда. Во-вторых, ток молнии формирует не только заряд на проводах ЛЭП, но и заряд на поверхности земли.

Молния обычно имеет причудливо изогнутый и сильно разветвленный канал, что авторы не учитывают и даже не упоминают об этом. Поэтому принятая авторами модель для математических спекуляций совершенно не отражает процессы реальной молнии.

Не понятно, зачем авторам в схеме замещения (рис. 3) потребовалось включение между каналом молнии и точкой удара молнии в ЛЭП диполя. В действительности никакого диполя нет. Канал молнии или его часть нельзя рассматривать как диполь.

Авторы используют термины и жаргонные выражения, не понимая их значения. Так, они вводят понятие «точка атаки». «Атака» — это процесс, а процесс не имеет точки. Что такое «волна импульса», «волна последствия», «расплывающийся вдоль линии хвост волны импульса», «фазовая скорость», «волна потенциала», «дно» облака, «распределение емкости чехла», «закручивание потенциала» и т.п.? Обилие таких выражение свидетельствует об отсутствии у авторов строгого подхода к рассматриваемым в рукописи проблемам.

Следует отметить еще одно обстоятельство. Удар молнии в фазные провода ЛЭП возможен, если ЛЭП выполнена без грозозащитных тросов. А это, как правило, ЛЭП низкого и среднего напряжений. При ударах в такие ЛЭП, в опоры контактной сети электрифицированных железных дорог, наземные трубопроводы и т.д. неизбежны обратные перекрытия изоляции, разряды с проводов ЛЭП на землю, искровые процессы в грунте, искрение между металлическими предметами и в контактных соединениях. Все это приводит к развалу принятой авторами модели и полной практической непригодности выведенных формул. Наличие в формулах подгоночных коэффициентов может обеспечить совпадение результатов расчета и единичного эксперимента. В общем случае выведенные формулы бесполезны. Выводы, приведенные в конце рукописи, можно было бы сделать и без текста.

Считаю публикацию статьи в журнале «Электричество» бессмысленной, так как такая статья не может быть полезной читателям.