Многополюсные синхронные генераторы с постоянными магнитами для ветроэнергетических установок¹

КОВАЛЕВ Л.К., КОВАЛЕВ К.Л., ТУЛИНОВА Е.Е., ИВАНОВ Н.С.

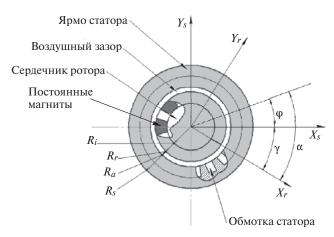
Разработана методика аналитического расчета двухмерных магнитных полей в активной зоне синхронных электрических машин (СМ) с постоянными магнитами (ПМ) применительно к их использованию в ветроэнергетике. Получены аналитические соотношения для определения выходных параметров СМ с ПМ с учетом геометрии активной зоны, числа пар полюсов и магнитных характеристик материалов, в том числе при применении высокотемпературных сверхпроводников (ВТСП) на роторе. Выведены критериальные зависимости для расчета ЭДС и главного индуктивного сопротивления СМ с ПМ с учетом геометрии машины, наличия или отсутствия ВТСП элементов на роторе и электрофизических свойств используемых материалов. Приведена методика оценки параметров синхронных генераторов с ПМ для ветроэнергетических установок (ВЭУ) большой мощности.

Ключевые слова: синхронный генератор, постоянные магниты, ветроэнергетическая установка, аналитический расчет

В России и за рубежом большое внимание уделяется вопросам расчета и проектирования синхронных электрических машин (СМ) с высококоэрцитивными постоянными магнитами (ПМ) на основе редкоземельных материалов [1, 4]. Как показали исследования, СМ с ПМ имеют относительно простую конструкцию, отличаются высокой надежностью и длительным сохранением магнитных свойств магнитов (до 10 лет) [1, 4]. Такие машины обладают высоким КПД из-за отсутствия потерь на возбуждение, что особенно важно для их применения в промышленности, на транспорте, в аэрокосмической технике и ветроэнергетике. Расчеты СМ с ПМ при числе пар полюсов p < 4 подробно рассмотрены в [2]. В то же время мощные низкооборотные СМ с ПМ с большим числом пар полюсов при наличии в составе ротора пленочных ВТСП элементов применительно к их использованию в ветроэнергетике исследованы не достаточно полно.

В статье представлены аналитические решения задач о распределении двухмерных магнитных полей в многополюсных СМ с ПМ. Получены простые безразмерные критерии для определения ин-

A procedure for analytically calculating 2D magnetic fields in the active zone of permanent-magnet synchronous machines is developed for using these machines in wind power applications. Analytic relations for determining the output parameters of permanent-magnet synchronous machines are obtained that take into account the active zone geometry, number of pole pairs, and magnetic characteristics of materials, also in the case of using high-temperature superconductors (HTS) in the rotor. Dimensionless dependences for calculating the EMF and main inductive reactance of a permanent-magnet synchronous machine are derived that take into account the machine geometry, presence or absence of HTS elements in the rotor, and electrophysical properties of employed materials. A procedure for estimating the parameters of permanent-magnet synchronous generators for large-capacity wind power installations is presented.


Key words: synchronous generator, permanent magnets, wind power installation, analytic calculation

дуктивных параметров таких машин с учетом геометрических размеров и физических характеристик материалов в активной зоне. Это позволяет рассчитывать машины на этапах их проектирования с учетом характеристик ветроэнергетических установок, а также параметров осевых турбин для малой гидроэнергетики.

Двухмерные магнитные поля в активной зоне СМ с ПМ. Схема многополюсной синхронной электрической машины с ПМ представлена на рис. 1. При постановке задачи расчета двухмерных магнитных полей в дальнейшем принимаются следующие основные допущения: вектор намагниченности всех постоянных магнитов M имеет только радиальную составляющую $M\{0,M_r\}$. Принимается, что составляющая M_r секций радиальных ΠM распределена по радиусу как $M_r = M_0 R_r / r$, что приближенно соответствует постоянству магнитного потока Ф по радиусу и обеспечивается применяемыми технологиями намагничивания радиальных постоянных магнитов. В зоне ротора, занятой секциями радиальных магнитов и немагнитными промежутками между ними, распределение $M_{\rm r}$ по азимутальному углу ј аппроксимируется ступенчатой функцией от ј и ее разложением в ряд Фурье. При рассмотре-

 $^{^1}$ Работа выполнена в рамках Государственного контракта «Разработка сверхпроводниковых двигателя, генератора, кинетического накопителя энергии и испытательного стенда».

нии магнитного поля машины ярмо статора считается ненасыщенным ($\mathfrak{m}_{\mathbb{C}}$ \mathbb{R} \mathbb{P}). Для получения аналитических решений, описывающих электромагнитные процессы в СМ с ПМ, используется эквивалентный токовый слой на радиусе R_a (рис. 2) с линейной плотностью J_0 , синусоидально распределенной по угловой координате \mathfrak{j} . Машина считается достаточно длинной \mathfrak{t}/L < 1 ($\mathfrak{t}=\mathfrak{p}R_s/p$ — полюсное деление).

Рис. 1. Конструктивная схема многополюсной электрической машины с постоянными магнитами

С учетом принятых допущений при записи расчетных соотношений использовалось схематическое изображение на рис. 2.

Задача о распределении двухмерных магнитных полей сводится к решению уравнения Пуассона относительно осевой составляющей векторного магнитного потенциала \mathbf{A} ($\mathbf{B} = \text{rot}\mathbf{A}$) при соответствующих граничных условиях на поверхностях раздела сред с различными магнитными свойствами [1]:

$$B_{n+} = B_{n-}$$
; $H_{t+} = H_{t-}$.

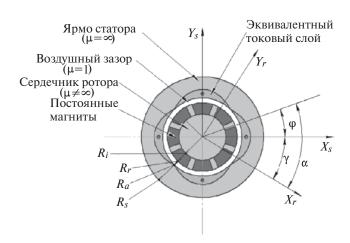


Рис. 2. Расчетная схема многополюсной синхронной электрической машины с постоянными магнитами

При принятых допущениях активная зона СМ с ПМ содержит области, отличающиеся магнитными свойствами (рис. 2):

сердечник ротора $(0 \ \ \ \ \ r \ \ \ \ \ R_i)$ с магнитной проницаемостью $m_{\rm b}$;

$$B_{\rm r} = {\rm m}_0 H_{\rm r}; \ M_{\rm r} = \frac{R_r}{\rm r} \cos p {\rm a}; \ B_{\rm j} = {\rm m}_0 H_{\rm j}, \quad (1)$$

где $M_{\rm r}$ соответствует первой гармонике разложения в ряд Фурье намагниченности ПМ в активной зоне машины; а — угол, отсчитываемый в системе координат ротора (см. рис. 2);

область воздушного зазора между расточкой статора R_s с $\mathsf{m}_{\mathbb{C}} \otimes \mathsf{Y}$ и поверхностью ротора R_r $(R_r \ \pounds \ r \ \pounds \ R_s), \ \mathsf{m}_0 = 1.$

Распределение магнитных полей в указанных областях можно найти, решив соответствующие уравнения Пуассона для векторного магнитного потенциала с использованием граничных условий на поверхностях раздела сред с различными магнитными проницаемостями. Поправка на параметры СМ с ПМ за счет конечного размера зубцовой зоны и спинки статора может быть найдена из теории магнитных цепей после решения двухмерной задачи.

Структура решения в воздушном зазоре. В области воздушного зазора с токовым слоем, расположенным на радиусе R_a , уравнение Пуассона для векторного магнитного потенциала имеет вид [2]:

$$DA = m_0 J_0 \sin(pj) d(r - R_a), \qquad (2)$$

где $d(r - R_a)$ — дельта-функция.

Общее решение (2) для первой гармоники векторного потенциала [2]:

$$A_{d} = \frac{m_0 w_a m_{\phi} i_m k_a \overset{\text{e}}{\underset{e}{\rightleftharpoons}} r \overset{\text{o}}{\underset{e}{\rightleftharpoons}} sin(pj) + (a_p sin(pj) + c_p cos(pj)) r \overset{p}{\rightleftharpoons} (b_p sin(pj) + d_p cos(pj)) r \overset{-p}{\underset{e}{\rightleftharpoons}} (3)$$

где m_0 — магнитная проницаемость вакуума; i_m — амплитудное значение тока статора; m_{Φ} — число фаз; w_a — число витков в фазе; k_a — обмоточный коэффициент; R_a — радиус токового слоя; p — число пар полюсов; $a_{\mathsf{p}}, b_{\mathsf{p}}, c_{\mathsf{p}}, d_{\mathsf{p}}$ — неизвестные константы, определяемые из граничных условий; знак «+» соответствует области внутри токового слоя $(\mathsf{r} < R_a)$; знак «-» — области вне токового слоя $(\mathsf{r} > R_a)$.

Граничное условие $[H_t] = 0$ на поверхности статора с $\mathsf{m}_{\mathsf{c}} \ \, \mathbb{Q} \ \, \mathsf{Y} \ \, (\mathsf{r} = R_{_S})$:

$$-\frac{1}{\mathsf{m}_{b}}\frac{\partial A_{\mathsf{d}}}{\partial \mathsf{r}}\Big|_{R_{s}} = 0. \tag{4}$$

После подстановки (3) в (4) можно найти связь между константами $b_{\rm p}$ и $a_{\rm p},\ d_{\rm p}$ и $c_{\rm p}$:

$$b_{\rm p} = a_{\rm p} R_{\rm s}^{2p} - R_{\rm s}^{p}; d_{\rm p} = c_{\rm p} R_{\rm s}^{2p}.$$
 (5)

С учетом (5) решение для $A_{\sf d}$ в воздушном зазоре записывается в виде:

$$DA_m = \frac{1}{m_0} \text{rot} M, \tag{7}$$

где значение намагниченности ПМ M определяется из (1) как $M = \frac{1}{r} M_0 R_r \cos(ap)$; а — угол, отсчиты-

ваемый в системе координат ротора (рис. 2), связан с углом j, отсчитываемым в системе координат статора зависимостью: a = (g + j)p, где g - yгол поворота ротора относительно статора.

При этом напряженность магнитного поля удовлетворяет уравнению Максвелла $\operatorname{rot} \overline{H} = 0$ [1]:

$$\operatorname{rot} \overline{H} = i \overline{z} \stackrel{\uparrow}{i} \frac{1}{r} \frac{\partial (r H_{j})}{\partial r} - \frac{1}{r} \frac{\partial H_{r}}{\partial j} \stackrel{\ddot{\mu}}{b} = 0.$$
 (8)

Учитывая соотношения составляющих напряженности магнитного поля для $H_{\hat{j}} = -\frac{1}{m_{h}} \frac{\partial A}{\partial r};$

$$H_{\rm r} = rac{1}{{
m m_0}} rac{{
m e} {
m l}}{{
m e}} rac{{
m d} A}{{
m e} {
m j}} - rac{M_0 R_r}{{
m r}} {
m cos}(p{
m a}) \stackrel{\ddot{
m o}}{\div}$$
 и подставляя их в

(8), получаем уравнение, описывающее распределение векторного магнитного потенциала в кольцевой магнитной оболочке:

$$\frac{\partial \underset{\bullet}{\text{e}}}{\text{f}} \frac{\partial A}{\partial j} \frac{\ddot{o}}{\dot{\varphi}} + \frac{1}{r} \frac{\partial^2 A}{\partial j^2} = \frac{M_0 R_r}{r} \sin((g + j)p). \tag{9}$$

Общее решение уравнения (9) имеет вид:

$$A_m = \frac{M_0}{p} \sin((\mathbf{g} + \mathbf{j})p) + \overset{\approx}{\overset{\circ}{\varsigma}} d_1 \mathbf{r}^p + \frac{d_2}{\mathbf{r}^p} \frac{\overset{\circ}{\overset{\circ}{\varsigma}}}{\overset{\circ}{\overset{\circ}{\wp}}} \sin(p\mathbf{j}) +$$

$$\mathop{\mathsf{c}}_{\mathsf{Q}}^{\mathfrak{Z}} + \mathop{\mathsf{c}}_{\mathsf{Q}}^{\mathsf{Z}} d_{3} \mathop{\mathsf{r}}^{p} + \frac{d_{4}}{\mathop{\mathsf{r}}^{p}} \frac{\ddot{\mathsf{c}}}{\dot{\varpi}} \cos(p \mathbf{j}), \tag{10}$$

где d_1 , d_4 — неизвестные константы, определяемые из граничных условий задачи.

Структура решения в сердечнике ротора. В данной области решение уравнения Лапласа ($DA_i = 0$) для векторного магнитного потенциала с учетом граничных условий при r = 0 ($A_{r=0} < Y$) имеет вид:

$$A_i = c_1 r^p \sin(pj) + c_2 r^p \cos(pj),$$
 (11)

где c_1 , c_2 — неизвестные константы.

Соотношения (6), (10), (11) для распределения векторного магнитного потенциала в активной зоне СМ с ПМ содержат 8 неизвестных констант (a_p , c_p , d_1 , d_2 , d_3 , d_4 , c_1 , c_2), которые определяются из граничных условий соответственно на поверхности ротора ($\mathbf{r} = R_r$) и сердечника ($\mathbf{r} = R_i$):

$$[B_n] = 0, \quad \frac{1}{r} \frac{\partial A_{d}}{\partial j} \Big|_{R_r} = \frac{1}{r} \frac{\partial A_m}{\partial j} \Big|_{R_r}, \quad \frac{1}{r} \frac{\partial A_i}{\partial j} \Big|_{R_i} = \frac{1}{r} \frac{\partial A_m}{\partial j} \Big|_{R_i},$$

$$[H_j] = 0, \quad -\frac{1}{m_0} \frac{\partial A_{d}}{\partial j} \Big|_{R_r} = -\frac{1}{m_0} \frac{\partial A_m}{\partial r} \Big|_{R_r},$$

$$(12)$$

$$-\frac{1}{mm_0} \frac{\partial A_i}{\partial r} \Big|_{R_i} = -\frac{1}{m_0} \frac{\partial A_m}{\partial r} \Big|_{R_i}.$$

Подставив явный вид $A_{\sf d}$, A_i и A_m из (6), (10), (11) в (12), можно получить систему алгебраических уравнений для определения неизвестных констант $a_{\sf p}$, $c_{\sf p}$, d_1 , d_2 , d_3 , d_4 , c_1 и c_2 , решив которую, получим:

$$\begin{split} a_{p} &= \frac{M_{0}R_{r}\cos(p\mathbf{g})}{4pE_{e}R_{r}^{p}}\{(\overline{R}^{p} + \overline{\overline{R}}^{2p})m + (\overline{R}^{p} + \overline{\overline{R}}^{2p})\},\\ &\cdot \frac{\overline{R}^{p} - 1}{\overline{R}^{p}} + \frac{1}{R_{s}^{p}}m;\\ c_{p} &= \frac{M_{0}R_{r}\sin(p\mathbf{g})}{4pE_{e}R_{r}^{p}}\{(\overline{R}^{p} + \overline{\overline{R}}^{2p})m + (\overline{R}^{p} + \overline{\overline{R}}^{2p})\},\\ &\cdot \frac{\overline{R}^{p} - 1}{\overline{R}^{p}};\\ d_{1} &= \frac{M_{0}R_{r}\cos(p\mathbf{g})}{4pR_{r}^{p}}\{k((\overline{R}^{p} + \overline{\overline{R}}^{2p})m + \overline{R}^{p}) - \overline{\overline{R}}^{2p}\},\\ &\cdot \frac{\overline{R}^{p} + 1}{\overline{R}^{2p}} + (m + 1)\frac{E_{e}}{R_{s}^{p}};\\ d_{2} &= \frac{M_{0}R_{r}\cos(p\mathbf{g})}{4pR_{r}^{p}}\{k((\overline{R}^{p} + \overline{\overline{R}}^{2p})m - \overline{R}^{p}) - \overline{R}^{2p}\},\\ &\cdot (\overline{R}^{p} + 1)R_{s}^{2p} + (m - 1)R_{s}^{p}E_{e}; \end{split}$$

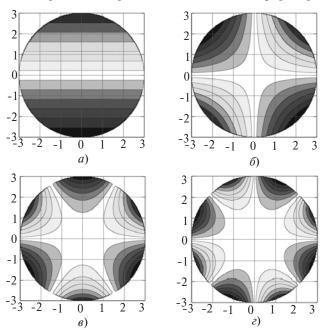
$$d_{3} = \frac{M_{0}R_{r}\sin(pg)}{4pR_{r}^{p}} \{k((\overline{R}^{p} + \overline{R}^{2p})m + \overline{R}^{p}) - \overline{R}^{2p}\}'$$

$$\cdot \frac{\overline{R}^{p} + 1}{\overline{R}^{2p}};$$

$$d_{4} = \frac{M_{0}R_{r}\sin(pg)}{4pR_{r}^{p}} \{k((\overline{R}^{p} + \overline{R}^{2p})m - \overline{R}^{2p}) - \overline{R}^{p}\}'$$

$$\cdot (\overline{R}^{p} + 1)\overline{R}_{i}^{2p};$$

$$c_{1} = (m - 1)E_{c}\frac{(\overline{R}^{p} + 1)}{R_{s}^{p}} + \frac{M_{0}\cos(pg)}{4R}(\overline{R}^{p} + \overline{R}^{2p})'$$


$$\cdot (\overline{R}^{p} - 1)(\overline{R}^{p} + 1)(m - 1);$$

$$c_{2} = \frac{M_{0}\sin(pg)}{4R}(\overline{R}^{p} + \overline{R}^{2p})(\overline{R}^{p} - 1)(\overline{R}^{p} + 1)(m - 1),$$

$$E_{e} = \frac{m_{0}w_{a}m_{\Phi}i_{m}k_{a}}{2pp}; \quad m = \frac{m+L}{mL+1}; \quad L = \frac{\overline{R}^{2p} - 1}{\overline{R}^{2p} + 1};$$

$$k = \frac{\overline{R}^{p} - 1}{\overline{R}^{p}}; \quad \overline{R} = \frac{R_{r}}{R_{i}}, \quad \overline{R} = \frac{R_{s}}{R_{i}}.$$

На рис. $3,a-\epsilon$ представлены результаты расчета распределения векторного магнитного потенциала A в активной зоне СМ с ПМ при различном числе пар полюсов p. Из рисунков видно, что при увеличении числа пар полюсов распределение векторного магнитного потенциала становится существенно неоднородным. При больших значениях p распре-

Рис. 3. Распределение векторного магнитного потенциала в активной зоне СЭМ с ПМ при различном числе пар полюсов: a-p=1; 6-p=2; s-p=3; z-p=4

деление локализовано в основном в области воздушного зазора и быстро затухает вне его. Это позволяет при проектировании и изготовлении существенно уменьшить массу многополюсного сердечника ротора.

Если на внешнем радиусе ротора находится ВТСП оболочка, экранирующая поля статора, то выражения для коэффициентов $a_{\rm p}$ и $c_{\rm p}$ в воздушном зазоре будут иметь вид:

$$a_{\rm p} = \frac{R_s^{2p} - R_r^{2p}}{(R_s^{2p} + R_r^{2p})R_s^p}; c_{\rm p} = 0.$$
 (14)

Основные параметры СЭМ с ПМ. Основными параметрами синхронных машин с постоянными магнитами являются ЭДС холостого хода и главное индуктивное сопротивление, для определения которого найдем энергию магнитного поля в активной зоне машины от токов статора при нулевых значениях намагниченности ПМ (M=0) [1]:

$$W = \frac{1}{2} \grave{O} J A_{\mathsf{d}} dV = \frac{1}{2} J_0 L_s R_s \stackrel{2p}{O} A_{\mathsf{d}} \Big|_{\mathsf{r} = R_s} \sin(p \mathsf{j}) d\mathsf{j} , \quad (15)$$

где
$$J_0 = \frac{m_{\Phi} i_m w_a k_a}{\mathsf{p} R_{\mathsf{s}}}$$
 — токовая нагрузка статора; L_{s}

— активная длина машины; $A_{\sf d}$ определяется из (6) с учетом выражений для $a_{\sf p}$ и $c_{\sf p}$ из (13).

После интегрирования получим

$$W = \frac{m_0 k_a^2 i_m^2 m_{\Phi}^2 w_a^2 L_s}{2 p p} m,$$
 (16)

где m_{Φ} — число фаз; i_m — амплитудное значение тока фазы; w_a — число витков статора; k_a — обмоточный коэффициент.

Энергия одной фазы СЭМ $W_1 = W / m_{\Phi}$; используя соотношения $W_1 = LI_{\rm c}^2/2$; $x_a = {\rm w}L$; $i_m = I_{\rm c}\sqrt{2}$ (где $I_{\rm c}$ — действующее значение тока статора; w — круговая частота), получаем явные выражения для главного индуктивного сопротивления:

при отсутствии ВТСП оболочки

$$x_a = 4 m_0 f k_a^2 m_{db} w_a^2 L_s m / p;$$

при наличии ВТСП оболочки,

$$x_a = 4 m_0 m_{db} w_a^2 k_a^2 L_s f R_s^p / p R_r^p,$$
 (17)

где f — частота сети.

Действующее значение ЭДС ротора E_0 находится через поток от магнитов при нулевых токах статора с помощью следующих соотношений [2, 4]:

$$E_0 = p\sqrt{2}k_a w_a f F_m; (18)$$

$$F_m = 2t L_s B_m / p, t = p R_s / p,$$
 (19)

где F_m — магнитный поток через полюсное деление t от $\mathsf{\Pi}\mathsf{M}$ ротора; B_m — амплитудное значение радиальной составляющей магнитной индукции в воздушном зазоре при $\mathsf{r} = R_\mathsf{s}$:

$$B_m = B_{\text{dr}} \left|_{R_s} = \frac{\text{eel}}{\hat{\mathbf{g}}} \frac{\partial A_{\text{d}} \ddot{\mathbf{g}}}{\partial \mathbf{j}} \frac{\ddot{\mathbf{g}}}{\dot{\mathbf{g}}} R_s \right. \tag{20}$$

Подставляя (19), (20) в (18) и учитывая явный вид $A_{\sf d}$ (6), а также то, что ток статора I = 0, получаем выражение для ЭДС холостого хода:

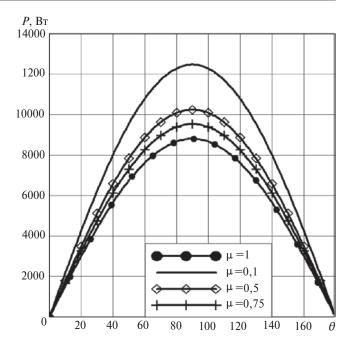
$$E_{0} = 2\sqrt{2} \frac{p}{p} k_{a} w_{a} f R_{s}^{p} L_{s} M_{0}'$$

$$(\overline{R}^{p} + \overline{R}^{2p}) m + (\overline{R}^{p} - \overline{R}^{2p}) \} \frac{\overline{R}^{p} - 1}{2R_{r}^{p-1} \overline{R}^{p}}. \tag{21}$$

Выражение (21) справедливо и при наличии ВТСП оболочки на роторе.

По (17) и (21) можно построить зависимости ЭДС холостого хода E_0 и индуктивного сопротивления x_a от числа пар полюсов p СМ с ПМ при наличии ВТСП оболочки на роторе и при ее отсутствии. В расчетах принималось одинаковое значение числа витков фазы w_a при различных p. Установлено, что с увеличением числа пар полюсов главное индуктивное сопротивление и ЭДС уменьшаются; при больших значениях p их асимптотические зависимости $x_a \sim 1/p^2$, а $E_0 \sim 1/p$.

СМ в двигательном и генераторном режимах. Из векторной диаграммы ЭМ с ПМ [1] в двигательном режиме можно получить следующие выражения для $\cos j$, тока фазы I и электромагнитной мощности P_2 (приведены соотношения в предположении нулевого сопротивления обмоток статора):


$$\cos j (q) = \frac{E_0 \sin(q)}{\sqrt{(U \cos(q) - E_0)^2 + (U \sin(q))^2}}; \quad (22)$$

$$I(q) = \frac{\sqrt{(U\cos(q) - E_0)^2 + (U\sin(q))^2}}{x_a}; \qquad (23)$$

$$P_2(q) = \frac{m_{\phi} U E_0}{x_a} \sin(q),$$
 (24)

где q — угол нагрузки.

По (22)—(24) можно построить угловые характеристики машины в двигательном режиме. В расчете принималось: $R_s=0.034$ м; $R_r=0.031$ м; $R_i=0.024$ м; $L_s=0.08$ м; $w_a=264$; f=50 Гц; $M_0=0.7$ Тл; U=220 В. Зависимости показали, что

Рис. 4. Зависимости выходной мощности от угла нагрузки при различных значениях магнитной проницаемости ВТСП оболочки

соѕј имеет максимум при небольшом угле нагрузки, мощность двигателя максимальна при угле нагрузки 90° , а ток статора I увеличивается с ростом угла нагрузки.

На рис. 4 приведены зависимости выходной мощности СЭМ в двигательном режиме от угла нагрузки при различных значениях магнитной проницаемости ВТСП оболочки. Видим, что применение тонкой ВТСП оболочки на поверхности ротора с ПМ позволяет увеличить выходную мощность СМ с ПМ до двух раз.

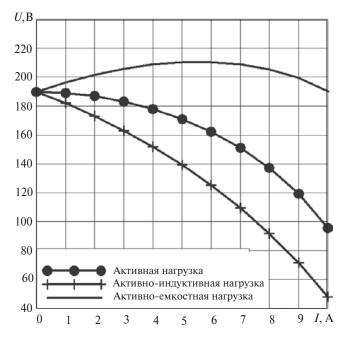
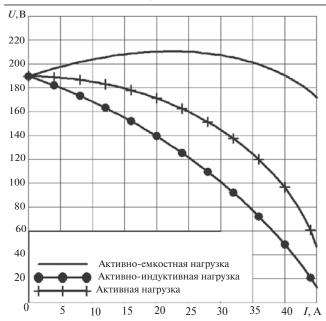



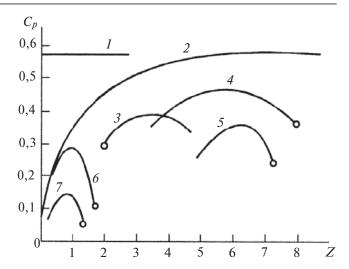
Рис. 5. Внешняя характеристика генератора с ПМ

Рис. 6. Внешняя характеристика генератора с ПМ и ВТСП оболочкой на роторе

Внешние характеристики СМ с ПМ в генераторном режиме приведены на рис. 5, внешние характеристики СМ с ПМ и ВТСП оболочкой — на рис. 6 [4]:

$$U = \sqrt{E_0^2 - (x_a I)^2 \cos(j)^2} - x_a I \sin(j), \quad (25)$$

где j - yгол, который зависит от характера нагрузки: j = 0 при активной нагрузке, j < 0 при емкостной, j > 0 при индуктивной.


Энергетические параметры ветроэнергетической установки (ВЭУ). В отсутствие турбулентности объем воздуха, проходящего в единицу времени через поперечное сечение ветроколеса площадью A_k (ометаемую площадь), обладает кинетической энергией [3]:

$$P_0 = \frac{1}{2} \, \mathsf{r} \, A_k u_0^3, \tag{26}$$

где ${\bf r},\,u_0$ — плотность и скорость набегающего воздушного потока; таким образом, P_0 есть энергия ветрового потока.

Плотность воздуха г зависит от высоты и метеорологических условий. Скорость ветра увеличивается с высотой, зависит от местных географических условий и может сильно изменяться во времени. Предположим, что на заданной высоте мачты ветроколеса плотность воздуха г и скорость ветра u_0 постоянны во времени и в любом поперечном сечении рассматриваемого воздушного потока.

Мощность, передаваемая ветроколесом на вал генератора, может быть выражена с помощью коэффициента Бетца C_p [5]:

Рис. 7. Зависимость критерия C_p от быстроходности ветроколес различного типа: I — критерий Бетца (59%); 2 — критерий Глауэрта; 3 — трехлопастное ветроколесо; 4 — двухлопастное ветроколесо; 5 — вертикально-осевые ветроколеса типа Дарье; 6 — многолопастные ветронасосы; 7 — ротор Савониуса

$$P_2 = P_0 C_p. (27)$$

Максимальное значение $C_p = 16/27 \gg 0,59$ [3, 6]. Таким образом, в лучшем случае только немногим более половины энергии набегающего ветрового потока можно использовать в ветроустановке. Это объясняется тем, что воздушный поток должен обладать определенной кинетической энергией, чтобы покинуть область ветроколеса.

Важным параметром ветроколеса является его быстроходность [3]:

$$Z = RW/u, (28)$$

где R — радиус ветроколеса; W — частота вращения. На рис. 7 показаны зависимости критерия C_n от

На рис. 7 показаны зависимости критерия C_p от быстроходности ветроколёс различного типа [3].

Методика оценки параметров синхронных генераторов (СГ) с ПМ для ВЭУ. Инженерная методика расчёта СГ ВЭУ основывается на следующих предположениях. Мощность генератора P_2 считается заданной, коэффициент C_p можно найти для различных ветроколёс по графику на рис. 7. Из (26)—(28) можно вычислить поперечное сечение ветроколеса A_k , зная мощность генератора P_2 , коэффициент C_p , а также скорость ветра u_0 :

$$A_k = \frac{2P}{\operatorname{r} u_0^3 C_p}. (29)$$

Характерные размеры электрической машины получим из следующих соотношений:

радиус ветроколеса $R = \sqrt{A_k} / p$. Оценка внешнего радиуса синхронной машины $R_E = R / K_S$, где K_S — конструктивный параметр, выбираемый из опыта проектирования ветроэнергетических уста-

новок [6] ($K_s = 10$, 30 в зависимости от размера ветроколеса);

радиус расточки статора многополюсной синхронной машины $R_s \gg R_E$ /1,25, радиус ротора $R_r = R_s$ - d, где d — воздушный зазор, радиус сердечника ротора $R_i = R_r$ - Dm, где Dm — высота постоянных магнитов ротора, активная длина машины $L_s = 1\,2\,R_s$, где 1 — относительная длина машины.

После определения основных размеров электрической машины оценивается число лопастей ветроколеса $n_L = 4 \, \mathrm{p} \, / \, z$.

Физическая частота вращения вала ветроколеса и СГ $W=u_0Z/R$ (рад/с), физическая частота вращения вала ветроколеса и СГ n=30W/p (об/мин), при этом W=pW.

Затем ориентировочно оцениваются обмоточные параметры машины: $Z_s \gg \frac{2 \mathsf{p} \, R_s}{b_n + b_s}$, где Z_s — число пазов статора; b_n и b_s — высота и ширина паза; число пазов на полюс и фазу $q = \frac{Z_s}{m_\Phi p}$ 3 1, число вит-

ков w_a можно примерно оценить по значению ЭДС холостого хода. Далее, используя (17), (21) и (25), определяются основные параметры синхронного генератора с ΠM .

_СПИСОК ЛИТЕРАТУРЫ _

- 3. **Удалов С.Н.** Возобновляемые источники энергии. Новосибирск: Изд-во НГТУ, 2008, 432 с.
- 4. **Бут Д.А.** Основы электромеханики. М.: Изд-во МАИ, 1996, 468 с.
- 5. **Виссарионов В.И.** Методы расчёта ресурсов возобновляемых источников энергии. М.: Изд-во МЭИ, 2009, 144 с.
- 6. **Соренсен Б.** Преобразование, передача и аккумулирование энергии. М.: Интеллект, 2011, 296 с.

[26.11.12]

Авторы: Ковалев Лев Кузьмич окончил факультет «Энергомашиностроение» Московского высшего технического училища им. Баумана в 1964 г. и механико-математический факультет Московского государственного университета в 1968 г. В 1996 г. защитил докторскую диссертацию по авиационно-космической электроэнергетике в Московском авиационном институте (МАИ). Заведующий кафедрой «Электроэнергетические, электромеханические и биотехнические системы» МАИ.

Ковалев Константин Львович окончил в 1993 г. факультет «Экспериментальная и теоретическая физика» Московского инженерно-физического института. В 2005 г. защитил в Московском энергетическом институте докторскую диссертацию по сверхпроводниковым электрическим машинам. Ведущий научный сотрудник кафедры «Электроэнергетические, электромеханические и биотехнические системы» МАИ.

Тулинова Екатерина Евгеньевна окончила факультет «Системы управления, информатика и электроэнергетика» МАИ в 2011 г. Младший научный сотрудник кафедры «Электроэнергетические, электромеханические и биотехнические системы» МАИ.

Иванов Николай Сергеевич окончил факультет «Системы управления, информатика и электроэнергетика» МАИ в 2011 г. Инженер кафедры «Электроэнергетические, электромеханические и биотехнические системы» МАИ.

Уважаемые авторы!

Редакция публикует при каждой статье краткие сведения об авторах на русском и английском языке. В связи с этим просим вас при направлении статьи в редакцию сообщать:

полные имена и отчества всех авторов;

какой факультет, какого вуза и когда закончил;

когда получил ученую степень, где и по какой тематике (теме) была защита; место работы и должность.

Кроме того, напоминаем, что на каждую статью следует представлять реферат (не менее 100 слов) на русском и английском языках (включая название), а также ключевые слова.

^{1.} **Иванов-Смоленский А.В.** Электрические машины, т. 2. — М.: Изд-во МЭИ, 2006, 532 с.

^{2.} **Ковалев Л.К., Ковалев К.Л., Конеев С.М.-А.** Электрические машины и устройства на основе массивных высокотемпературных сверхпроводников. — М.: Физматлит, 2010, 396 с.