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Keller—Dykhne method of inversion to define integral parameters
of multi-electrode two-dimensional systems'
KLYAMKIN S.S. (Vernon, California, USA) — Scientist

A new method to calculate integral parameters for two-dimensional multi-electrode structures having
symmetry axes or planes (conductivity, capacitance etc.) has been proposed. The method is based on a
simultaneous solution of algebraic equations for original and inverted systems (structures) connected
between them according to the principle of rotatory invariance of two-dimensional potential and solenoidal
fields. Then unknown formulas obtained on the basis of this method for calculation of linear capacitance of
a series of systems have been compiled in table showed in the Appendix. The method makes it possible to
extend the scope of application of Thompson—Lampard theorem on mutual partial capacitance per unit
length in a system containing four cylindrical conducting plates with symmetry planes. New solutions found
on the basis of Thompson—Lampard theorem may be used to solve a wider range of problems in electric
engineering. The connection between exact solutions of symmetric multi-electrode systems and geometric
parameters of regular polygons enables us to study the properties of similar systems without performing
additional calculations. The method may be used for calculation of not only linear capacitance but other
integral parameters of two-dimensional physical systems under different conditions of symmetry and

medium features distribution.
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Keller’s theorem [1] belongs to the theory of
two-dimensional heterogeneous media, namely to the
evaluation of average (“efficient”) specific conductivity
of these media in two mutually orthogonal directions.
The other fundamental paper concerning the same
subject is the article of Dykhne [2] where similar results
have been obtained on the basis of clearly more
demonstrative differential definition of rotational
invariance principle for two-dimensional field. The
backbone of Dykhne’s procedure just as of the Keller’s
one is that a potential two-dimensional force field and
a solenoidal flow field connected to it by Maxwell

I The author thanks Professor V. L. Chechurin for friendly support
and laborious contribution in the preparation of this article.

equation exchange their roles when rotated by 90° in
each point; when a dimensionless specific conductivity
(s, & m...) is replaced in each point by inverted value
(1/s, 1/e 1/m...) they represent new potential and
solenoidal fields connected by Maxwell equation.
The similarity of solutions of two-dimensional
inverse (in this context) problems has been always
observed. However, a conjoint solution of mutually
inverse problems by Keller and Dykhne introduced new
analytical expressions for averaged parameters of
heterogeneous media and in case of a certain symmetry
(regularity) of these media allowed to obtain previously
unknown exact formulae for averaged specific
conductivity and some integral characteristics for each
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of two mutually inverse media. That solution appears to
become a new successful method that has been
generalized and developed in a large number of
published papers of other authors.

Thus, there have been found exact expressions of
averaged specific conductivity ye of two-dimensional
two-component symmetric structure with equal
concentration of generating components. Specifically,
for field quincunx or random highly dispersed
structures s, = ,/S;S,, where s; and s, are specific

conductivities of generating components (in field
quincunx structure — black and white checker squares).

To be specific, all mentioned hereafter solutions
shall be referred to as electrostatic problems.

We shall call this method as Keller-Dykhne
inversion method. The numerous problems related both
to the evaluation of efficient dielectric permeability of
regular composite media (heterogeneous, anisotropic)
and integral parameters of some electrode systems in
heterogencous medium (mutual partial capacitances
etc.) may be solved with the aid of this method.

Previously, there have been solved some similar
problems for two-electrode systems with the help of the
above-mentioned method [3, 4, 5].

The goal of this paper is to develop the
Keller—Dykhne inversion method and to get new
solutions for multi-electrode systems. We shall study
electrically neutral heterogeneous two-dimensional
cylindrical systems containing 7z electrodes separated by
n impermeable membranes (boundaries) and forming in
cross-section together the closed contours encircling
simply connected flat surfaces.

Solution method. The method is intended to define
integral parameters of two mutually inverted two-
dimensional electrically neutral n-electrode systems by
generating and conjoint solving 2n linear algebraic
equations  for  charges on  electrodes and
electrode-to-electrode voltages.

The method of solution is based on the procedure
of matched field vector rotation, on the inversion of
dielectric permeability values and on setting relevant
numerical values of unlike charges and voltages of
initial system equal to unlike voltages and charges of
inversed system.

It is believed that all
capacitances are unknown.

In this case their values as unique solution of a
given system of equations may be obtained only for
electrode systems having a particular symmetry
conditioning a certain equality of these parameters in
mutually inverse systems and reducing thereby the
number of required unknown parameters. A formal
procedure for comparing mutual partial capacitances in
inverse systems for purposes of identifying this equality
means to superpose (match) inverse systems by their

initial mutual partial

relative non-deformable transfer or rotation. A desired
condition specifying required equations of mutual
partial capacitances is a full matching of mutually
inverted systems (congruence of limiting contours and
matching of dielectric permeability in matching points,
including boundary points those are conducting for
electrodes and non-conducting for impermeable
boundaries).

For the purpose of solution clearness the following
has been used:

dimensionless (numerical) equations
values using the equating sign «_ »;

figures exhibiting the procedure of matched field
rotation and mutual transformation of charges and
voltages common for mutual systems;

directional images (arrow) of scalar electrode
charges and electrode-to-electrode voltages presenting
their signs;

normalization of dielectric permeability of
heterogeneous medium ensuring an interchangeability
of some symmetrical parts or points of heterogeneous
medium at their inversion (i.e. equal to 1 product of
normalized permeabilities in symmetrical points for a
sensitive indicative case of the matched mutual
systems).

Let us give an example of dielectric permeability
normalization. Let a two-component medium have
arbitrary values of components € and e, permeability.
We shall replace this medium by another one having
the permeability of the same components

ef_e /€€ ; es_e,/ ee,.

We shall have as a result a new medium where the
component permeability is mutually invertible, i.e.
efe¢_ 1, and all integral parameters of original system
are connected to the parameters of normalized system
by common dimensionless proportionality factor
K= /g e,.

of unlike

A track in the plane of intersection of dimensionless
cylinder (perpendicular transverse section) is presented
in Fig. 1 on the left. The cylinder contains alternant
electrodes /, 2 and impermeable boundaries a, b being
in isotropic homogeneous medium with dielectric
permeability e Electrodes / and 2 are charged
uniformly along cylinder length with full charge on unit
length surface (charge per unit length) QO and (—Q)
respectively. Electrode-to-electrode voltage is U. For
vectors of electric displacement D and electric field
strength E in any point on the plane, including
boundary, D=eE. Vectors D and FE are Ilocated
everywhere in the plane of section and they are
directed on electrodes at right angle to their surface and
on impermeable membranes tangentially to their
surface. Specifically, let us consider an interior of
cylinder. On positively charged electrode [ field vectors
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are directed away from the electrode (charge Q marked
with arrow corresponds to them), on negatively charged
electrode 2 — towards it. On membranes a and b field
vectors D and E are directed from electrode [/ to
electrode 2 (voltage U is directed backward), as the
potential of positively charged electrode 7 is higher
than that of electrode 2. By definition, a unit-length
mutual partial capacitance between electrodes is
C,=0/U.

Matched rotation of all vectors in each point by 90°
in planes normal to cylinder axis (specifically —
counterclockwise rotation) and simultaneous inversion
of dielectric permeability together transform an original
system and field into mutual one presented on Fig. 1 at

the right with electrodes a, b and impermeable
boundaries 1, 2.
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Charges and voltages on both mutual inverted
systems are shown by arrows (assumed conventional
direction with respect to electrode surface — from
positive to negative and electrode-to-electrode potential
drop - from smaller to larger correspond to the sign of
scalar quantities of charges and voltages). These arrows
represent at the same time average values of vectors D
and (—E) on respective boundary surfaces. It should be
noted that to matched counterclockwise rotation of all
field vectors D and E, as it is shown in Figure,
corresponds a matched clockwise rotation of all charge
and voltage arrows (this difference is a consequence of
arrows opposite direction showing the field strength
from positive to negative potentials and the voltage
between two points — from negative to positive
potentials).

So, in a dual problem, according to the vector
rotation, electrodes and impermeable membranes
exchange their places at boundaries, and, while keeping
their value in modulus, electrode-to-electrode voltages
become charges on electrodes and vice versa. Thus,
given the shape of transverse section is arbitrary, a
mutual partial capacitance for dual problem is

Cop-U/0=1/Cp,, or C5C,p_ 1.

If e_ 1 and the section has an axis of anti-symmetry,
then C,=C_,_[; thus for non-normalized problem,
provided the normalized mutual systems are matching

Ca=Cupp=yepyey-

A common solution of 3-electrode system shown
below, may be considered as a typical model for
calculation of electrically neutral multi-electrode
system with piecewise homogeneous medium.

Transverse sections of two mutual inverse
3-clectrode systems built in the same way as in the
previous problem are shown in Fig. 2.
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The product of dielectric permeability of each
system for any pair of antisymmetric points (for
example, M and N) is equal to /, i.e. systems are
normalized.

A plane reflection of one of the systems with respect
to its anti-symmetry axis is congruent and fully
matching with the other system that is mutual to it
(matching electrodes, membranes, dielectric
permeability and dimensionless fields). Therefore the
following relation holds true: Q k= U K where k=1, 2, 3,
a, b, ¢; C;,=C,., C;3=C,, Cy3=C,.. Conditions of
electro neutrality are met at: Q;+0,+03=0,
0,+0,+0.=0, U, +U,y+U_.=0, U +U,+Uz=0.

A system of equations connecting charges, voltages
and mutual partial capacitances of both electrode
systems has the following form:

01=Crc U+ C3U.; 0y =CaU,- Cp3Uy;
03=C3C U+ Cp3Uy; 0,=Cre  UD+C Uy,
0,=Cppt Up)+Cp Uz 0.=C, U +Cy Us.

As Qk: U P charges and voltages of one of the
electrode systems may be excluded, so, we shall have
the following for numerical values of all quantities
making part of equations describing the first electrode
system

0=Crc U )+ C3U.; 0y CaU - CysUy;
03-Ci3C U )+ CpaUp: Uiz Cpp € 0+ €30,
Up= €136 Qy)+ C303; U= C1p 01+ Cp3(Q3).
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The relation €y, =Cj3=C,3=C follows out of the
cyclic symmetry of system equations and uniqueness of
solution.

Then, for example, leaving out all charges and
setting the voltages to any values that are physically
meaningful and meeting the condition of -electro
neutrality (e.g. U1, Up_ - 1, U.-0), we shall have
one quadratic equation 3C 2_| for all mutual partial
capacitances of both mutual electrode systems, with a
unique positive real solution of it being C_ 1 /«/5.

With the increase of the number of electrodes, the
number of various (non-coinciding in value) mutual
partial capacitances of each electrode system increases,
along with the number of quadratic equations to be
solved jointly.

Equations may take various forms. One of equation
options for fully matching mutual systems at n=4, 5, 6,
7 is given below.

Equation system for 4 electrodes:

2 2 —1 2 2 —
3+ O3+ 201G 3= 15 205 + 20344063 = 1
Equation system for 5 electrodes:

2 2 —1- 2 2 —
3C +3C3+4C,C3=1; 2CL + TC 5+ 6C,C3=1.
Equation system for 6 electrodes:

2 2 4 —1-
3Cy; + 3Cy3+ Cpy + 401 €13+ 2C15Cpy + 2C15004 = 1
2 2 2 —1.
2Cy) + 603+ 20, + 605 €3+ 2C)5 €1y +6C13C1, = L

2 a2 a2 _
3C5 + 3C 5+ 2C, +2C, Ci3+ 4C) Gy + 4C13C 4 = 1,

Equation system for 7 electrodes:
30+ 3073+ 30y + 401, Cp3 +4C), Cpy + 401304 = L
200 + 605+ O +6C)5Cp3+ 4C),Cpy +10C13C 4 =
30+ 203+ 70 + 201 Cp3 % 6C5Cpy +8C13Cpy = 1

Expressions for capacitances presented hereinafter
represent solutions of specified equation systems at
K=1, which is confirmed by direct substitution. Finding
analytical solutions (in radicals), if such exist, requires
relatively cumbersome algebraic transformations. The
search for solution can be significantly facilitated by
analysis of special symmetrical excitation modes of
respective multi-electrode systems, such as relations
between charges and/or voltages that allow to reduce
the number of unknown variables and decrease the
order of equation system.

Mutual partial capacitances of matching inverse
systems. Further on, we shall consider several problems
for cylindrical electroneutral two-dimensional electrode
systems, that, together with impermeable boundaries,
form simply connected closed curves. All results have
been received on the basis of Keller-Dykhne inversion
and are true for both interior and exterior domains.

la. Two electrodes in homogeneous medium. The
system has at least one axis of reflection anti-symmetry,
i.e. at dielectric permeability e_ 1 it is matching with a
mutual system by rotating around anti-symmetry axis
by 180° and parallel transfer.

In Fig. 3,a: 1 and 2 — electrodes, ¢ and b —
impermeable boundaries, e_. 1 — cylinder dielectric
permeability.

The inversion system of Fig. 3,a is shown in Fig.
3,b, with dielectric permeability e¢ 1/e_ I
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Unit-length  partial mutual capacitances are
C,=C,p=e at any value of e for both systems.

A more complicated solution for this problem is
known and is quoted in [6] with source references.

16. Two electrodes in homogeneous medium. The
system has a center of 2-fold rotational symmetry. A
homogeneous system boundary (here and after —
conventional unbroken homogeneous closed line
coinciding with the boundary of system) has a center of
4-fold rotational symmetry. The system is matching
with mutual system being rotated by 90° at e_ I.

An example of mutual inverse pair of feasible
systems [5] is given in Fig. 4.,a, b.

Unit-length partial mutual capacitance Cj, =€

2. Two electrodes in piecewise or continuously
heterogeneous medium. The system is matching with
mutual system. The product of dielectric permeabilities
of any pair of anti-symmetry points (points M and N,
coinciding with mutual points at superposition of one

Fig. 4
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mutual system on another) is equal to 1 (e;,ey- 1).
The system has at least one axis of anti-symmetry
and/or center of 2-fold rotational symmetry. A
homogeneous system boundary has an anti-symmetry
axis and/or 4-fold center of rotational symmetry.

Examples of respective piecewise homogeneous
two-component systems [3, 4, 5] are given in Fig. 5,a, b;
M and N — mutual points; grey domains have a
dielectric permeability e,,, white — ey .
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Fig. 5
Unit-length partial mutual capacitance

Cph= ,/eMeN _ L
If \/e, ey _ K (K — real number same for any pair

of mutual points), then the specified system is reduced
(normalized) to a system matching with a mutual one
by division of dielectric permeability by K in each
point, so the unit-length partial mutual capacitance is

C12: eyen K.

A similar procedure of system reduction to a
matching mutual system has been used in studied cases
of multi-electrode systems with heterogeneous media.

New results are given in pp. 37—39.

3. Three electrodes in heterogeneous medium. The
system can be reduced to a matching mutual system,

eyey K.

The system has at least one axis of anti-symmetry
and/or a center of anti-symmetry with respect to its
rotation by 180° and/or a center of threefold rotation
symmetry. A homogeneous system boundary has a
symmetry axis and/or a center of 2- or 3-fold or 6-fold
rotational symmetry.

Examples of respective two-component systems are
shown in Fig. 6,a, b, ¢, d; white domains have a
dielectric permeability e,, and grey domains e, .

A unit-length partial mutual capacitance (analytic
solution of a system of three linear equations set for
two mutual electrode systems) is equal to

Cl3=Cp3=Ci3=yJey ey /3_K /3.

It should be noted that the equality of all mutual
partial capacitances are not be evident following the
study of only one of mutual systems as in the case of
Fig. 6,a and 6,b. The same feature is exhibited by some

Fig. 6

systems studied below with the number of electrodes
exceeding three.
A homogeneous medium represents a special case
ey =eyN-
4. Four electrodes in heterogeneous medium. The
system can be reduced to a matching mutual system,
eyey_ K.

The system has two inter-perpendicular axes of
anti-symmetry and/or fourfold center of rotation
symmetry. A homogeneous boundary has two
inter-perpendicular symmetry axes and/or eightfold
center of rotational symmetry.

Examples of respective two-component systems are
given in Fig. 7,a, b; white domains have a diclectric
permeability e,, and grey domains — e, .
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Fig. 7

Unit-length partial mutual capacitances (analytic
solution of a system of four linear equations):

Cip=Cp3=Cy=Cy=eyey /2= K/
C13=Cyy=(2- D Jey ey /22 KW2- 1)/2.

Equality €|, =C,; and Cj3=C,, for a system in
Fig. 7,a are not evident and result from a simultaneous
solution of mutual systems.

5. Five electrodes in heterogeneous medium. The
system can be reduced to a matching mutual system,
vey ey _ K. The system has a center of fivefold

rotation symmetry and/or an axis (axes) of anti-
symmetry or a homogeneous boundary with a center of
tenfold rotational symmetry.
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An example of respective two-component systems is
given in Fig. 8,a, b; white domains have a dielectric
permeability e;, and grey domains e, .

P
b)

Fig. 8

Unit-length partial mutual capacitances (analytic
solution of a system of five linear equations):

Cry=4 ey ey /V50+ 10452 4K / 450+ 1045;
C13=Cp3=C3y=Cy5=Cis;

Cp3= (5- Dyfey ey /50+ 10452
_ (W3- K /4/50+ 1045;

C13=C14=Cyy=Cp5=Css.
6a. Six electrodes in heterogeneous medium. The

system can be reduced to a matching mutual system,
veéyey _ K. The system has a center of 6-fold

rotational symmetry and/ or an axis (axes) of
anti-symmetry or a homogeneous boundary with a
center of 12-fold rotational symmetry.
Figures illustrating these examples are similar to
those given for a problem with five electrodes.
Unit-length partial mutual capacitances (analytic
solution of a system of six linear equations):

Cpy =1+ ) fey ey /6= (1+3)K /6
C1p=Cp3=C34=Cy5=Cig;

C13= W3- Dyfey ey /62 (f3- DK /6;
C13= Cpq = C35= Cyg;

Cra=Q- V3)Jey ey /3= Q- VBK/3;
C14=Cp5=Csg.

6b. Six electrodes in heterogeneous medium. The
system can be reduced to a matching mutual system,

1leMeN_K. The system has an axis (axes) of anti-

symmetry and a center of 2-fold rotational symmetry.
A homogeneous system boundary has a center of 4-fold
rotational symmetry.

Examples of respective two-component systems are
given in Fig. 9,a, b; white domains have a dielectric
permeability e,, and grey domains e .

Fig. 9
All solutions for mutual partial capacitances are
similar to those of problem 6a.

7. Seven electrodes in heterogencous
two-dimensional medium. The system can be reduced
to a matching mutual system, ,/e v €y _ K. The system

has a center of 7-fold rotational symmetry and/ or an
axis (axes) of anti-symmetry or a homogeneous
boundary with a center of 14-fold rotational symmetry.

Figures illustrating these examples are similar to
those given for a problem with 5 and 6 electrodes
respectively.

Unit-length partial mutual capacitances (analytic
solution of a system of seven linear equations):

Cp,=0442 [e ey 0442K;

C1p=Cp3=C3y=Cy5=C56=Cy7;
Ci5=0112\/e,,ep _ 0l112K;

C13=Cy=C35=Cy=Csy;
C14=0072 e, ey _ 0072K;

Cl4=Cp5=C36=Cyy.

Here it would be appropriate to compare all the
solutions obtained above for mutual partial
capacitances of studied symmetric multi-electrode
systems with the data of mathematical theory of regular
n-gon. In particular, expressions of radius of
circumscribed and inscribed circles and regular n-gon
area for n=3, 4, 5, 6 have a structure and contain
radicals which are similar to solutions for respectively
3-, 4-, 5- and 6-electrode systems while there is no
analytic solution for a regular septagon (7-gon) and it
seems likely that this is due to the impossibility to build
such a polygon by means of compasses and ruler.

Let us compare e.g. expressions for mutual partial
capacitance of neighboring electrodes at K_1 for
considered 5-electrode system

Cpy= 4/ 450+ 1045

and for ratio of side length 1 and circumscribed circle
radius 7, in the case of regular pentagon
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1/7,=10/450+10V5.

The work on finding solutions for systems with n> 7
could be continued and, based on conclusions of
regular gon theory, one should expect only
computational solutions to exist for n=9, 11, 13, 18,
19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, ...

The following common rule (theorem) may be
formulated on the basis of obtained results:

If a two-dimensional system of alternating n
electrodes and n impermeable boundaries, which form
together in transversal section a closed contour
encircling a simply connected surface, is matching with
its mutual system created by Keller—Dykhne inversion,
and a number of system various mutual partial
capacitances does not exceed #n, then the values of all
mutual partial capacitances are:

invariant in terms of system linear dimensions and
boundary shapes;

directly proportional to geometric mean value of
system dielectric permeability;

the sole body of [n/2] positive real roots of a
specified [n/2] quadratic equations; [#n/2] is the integral
part of number n/2.

Keller—Dykhne inversion for Thompson—
Lampard theorem. The method of Keller—Dykhne
inversion may be applied to analytic solution and
calculation of parameters of a more extended class of
multi-electrode two-dimensional systems, when a part
of integral parameters of mutually inverted systems was
obtained by other means, e.g. by numerical calculations
of fields, by experiment or with the use of other
analytic methods.

Let us consider as an example of such an
application a known four electrode system shown on
Fig. 10 which was solved following Thompson —
Lampard theorem [7] for mutual partial capacitances of
opposite electrodes. Infinite small linear interspaces,
perpendicular to section planes (points a, b, ¢ and d on
Fig. 10) separate electrodes in in such a way that they
may have different potentials.

For a system with an arbitrary in shape transversal
section it has been proved that

o pCl/e+ o pCz/e: 1,
e — dielectric permeability of medium containing a
system, C; and C, — mutual partial capacitances
between electrodes ab-cd and ad-bc inside or outside a

Fig. 10

closed cylindrical shell containing electrodes and
interspaces between them.

In case the system possesses a symmetry plane (ac
on Fig. 11) or 4-fold rotational symmetry axis (center
O on Fig. 12) the generalized theorem implies the
following

C,=C,=eln2/p.

Thompson—Lampard theorem has found its
practical implementation in metrology during
elaboration of capacitance standard.

Let electrode ab on Fig.11 and 12 have a potential
U, the potential of three other electrodes is 0 and a
surface linear charge of electrode cd (per cylinder
unit-length — square to the surface of transversal
section) is Q. A dielectric permeability of medium is e.
Then a unit-length partial mutual capacitance between
electrodes ab and «cd per unit length is
C=Q/U==eln2/p.

The method of Keller—Dykhne inversion as applied
to this problem (matched rotation of strength and
displacement fields in each point by 90° around normal
line with respect to transversal section, for example,
clockwise) results in a new system of linear electrodes
(point electrodes in transversal section) a, b, ¢, d and
impermeable surfaces (lines in transversal section) ab,
be, cd, da (Fig.13).

The shape of surface boundaries is invariable and a
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Fig. 13

dielectric permeability e¢inside and outside this surface
should be equal to 1/e et 1/e In this case a linear
charge Q¢ of electrode a is equal to voltage U (each
vector £ becomes vector D and vice versa), a linear
charge QCof electrode b is equal to voltage U, and the
voltage U ¢between electrodes ¢ and d is equal to Q, so
we shall have relationships aU¢/Q¢Q/U_ a=

=In2 /ep_eln2 /p for inner and outer problems.

Fig. 12
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Thus, a system of linear electrodes in medium e’
having an exact solution for potential factor which
considers the voltage and charges in a system as a
function of one parameter — dielectric permeability of
medium - is associated with every two-dimensional
system of surface electrodes in medium e having a
definite exact solution for mutual partial capacitance
between opposite electrodes following Thompson—

Lampard theorem with the help of Keller—Dykhne
inversion. Similar to the basic Thompson—Lampard
theorem, this result may be implemented in practical
metrology.

Appendix. Mutual partial linear capacitances of
compatible two-dimensional inverse n-electrode systems (

*
e - mean geometric value of medium dielectric, k —
electrode index number)

Number Transversal section Ck,k+l/ e Ck,k+2 /e Ck,k+3/ e
of electrodes (sample) k> n k< 1 k< n- 2
T~
S |-
3 / 1/3 - -
4 ] (2-1/2 —
I
- N
5 *-.\ / 4750+ 1045 (5- 1) /4/50+ 1045 -
P
6 | l (1++/3)/6 W3- 1)/6 @- \3)/3
e
A
7 \ > 0.442 0.112 0.072
— \
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Hcnoab3oBanne metoaa uasepcun Kesiepa—/Iuxne 1 onpeaesieHus
MHTErpajbHbIX MNapaMeTPOB MYJIbTUIJIEKTPOIHBIX IBYXMEPHBIX CHCTEM
KJISIMKHH C.C.

IIpednoscen HOBbIIL MemOoO pacuema UHMESPANbHbIX NAPAMEMPO8 08YXMEPHBIX MHOL0INEKMPOOHbIX YCH-
policme, UMeujUx ocu UAU HAOCKOCMU cumMmempuu (I1eKmpuveckoi npoeooumMocmu, emKkocmu u op.).
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Memod ocnosan Ha comecmMHOM peueHuy aieedpauleckKux ypagHenuil 045 UCXOOHOU U UHBEPCHOU o OMm-
Howlenulo K Heil cucmem (ycmpoiicmea), C813aHHbIX Medxucdy co00il N0 NPUHYUNY NOBOPOMHOL UHBAPUAHM -
HOCMU 08YXMEPHbIX NOMEHUUAAbHbIX U COAeHOUOANbHbIX noaell. [loayuenHvle Ha ocHoge memoda Heus-
eecmmble panee Gopmyavl 045 pacuema NO2OHHOU AeKMPUHECKoll eMKOCMU YCMPOIiCme céedeHbl 6 madau-
uy, npugedeHHyo 6 npusoxcenuu. Memoo noseoaun pacuupums obaacmev npumeneHus meopemvl Tomnco-
na—JIbmnapoa (Thomson— Lampard) e3aumuoii yacmu4Holl emKocmu Ha eOuHUYy OAUHbL 8 CUCHmeMe He-
mblpex YUAUHOPUHECKUX NPOBOOAUUX NAACMUH, UMEHOUUX NA0CKOCMb cummempuu. [loayyenHble Ha OCHO-
e meopemvl Tomncona—J/Iomnapoa peutenuss MOJICHO UCNOAL308AMb 045 Oosee WUPOK020 Kpyea 3adau
anekmpomexnuku. Hatidennas ces13b mexncdy mMoYHbIMU peUeHUSMU 045 CUMMEMPUUHBIX MHO20INCKMPOO-
HbIX CUCMEM U 2eOMempUHecKUMU napamempamu nPAGUAbHbIX MHO20Y20AbHUKO8 NO360451em UCCAed08aMmb
ceoticmea nododHbIX cucmem Oe3 @binoaHeHus pacuemos. Ilpedaodcennviii Memood MOICHO NPUMEHUMb 045
pacuema He mMoAbKO NO20HHOU eMKOCMU, HO U Opyeux UHMeZpaabHbiX NApaMempos 08yXMepHbIX (huzuye-
CKUX cucmem NPU PA3AUMHBIX YCAOBUAX CUMMEMPUU U PACHPeOeseHUs XApaKkmepucmuk cpeo.

KniodyeBblie caoBa: MHO2091eKMPOOHbIE YCMPOUCIEd, FNEKMPUYECKas NPOSOOUMOCHb, eMKOCHIb,
08yxmepHble usuqecKue cucmemol, onpedeseHue UHmMezpaibHbix napamempos, meopema Tomncona—JI5m-
napoa

Aemop: C.C. Kiamrkun oxonuun Jlenunepaockuii — npo6odog Ha 36YKOGbIX 4ACMOMAX 0451 6blCOKOBONbIMHBIX
noaumexuuueckui uncmumym ¢ 1962 e. B 1970 e. 3auwu-  auHuil anekmponepedayu NOCMOSHHO20 MoKa». Hayunulii
mua  Kamouoamckyr — ouccepmayuio «HMccredosanue — compyonuk (Bepnon, Kanugpopnus, CIIIA).
2NEKMPUYECKUX — XAPAKMEPUCMUK — MHO20NPOBONOUHBIX



