DOI:10.24160/0013-5380-2019-4-12-18
() . , (), , [1]. , , , (, ) , [2]. , , - , , .
, , . , , . , , , , .
, - , . , ( ), , (), .
[3].
,
.
. . , , . . . : , . [4, 5].
. , , , ().
. , .
. ϻ, (k) tk (). (^), () . , , . n(t) , [6]:
(tk) (t 0) -(t0)
(() .
n(t),
(t ) (tk) (t )-
, (1) (2) . (t0) (1) (t0)<
'
(2) - (t0) > .
[(t^ )]=1-(tk)] . : [(^)]=1. . 1.
(0 . , , , , .
, .
, ,
|
. 1. : (to) < ; (to) > |
, , , , .. .
[(tk)]=(tk)]/(tk -t0 T), (3)
.
(3) [(to);1- , , . . .
, [(t)], , , . , [(t^)] [(t^)] [(t)] , .. [(^)]=[(tk)] [(tk)], t =tk +T[(tk)], t - .
. 2 [(tk)] t.
, , , . . , . , , .
. , .
, . , . [7], , . ,
ni [,- (t)], i=1, n ; n
i i
- . , i- =3 , , , =10, . , . [8].
1. (1) '=1,, *
F [(()].
[(i )]
, F [u j (, )] = j/ ni, j (-) u j (,) j=1, n,.
2. (m) ni um j(,) j=1,ni (4) [9]:
um,j()-uj(1.)
+ ,
nj +1 (n, +1)[u +1(/ )-u j (,)]
um, j(, > = u j(, >+[u j+1(, )-u j(,)]:
x[X(ny +1)- (j -1)].
3. :
n
M *[u m (, )]=2u m, j )/nt j=1
4. NH M*[u m (,)];
500.
5. - F {M [um(,)]} a=0,01, . , M [um ()] - 496- ;
M [u m ( ,)]
6. =1000 . 2-5 . M*[um (,)] .
7.
M [u m (,)]
500 1000 . 1%,
M [um (,)] = 1500.
1% .
[10]
M [u m (,)] -:
A
M [um(,)]= M [um(,)] 1
, ; , =0,05 A=1,13, n = 3
M* [um (, )]=0,35M * [um (,)]
M* [u m (,)] , : Iz m [, (t)]; Rem [, (t)]; Tm [1 (t)].
- . 3.
, (,-) . , , . , .
. :
1. , , (.10.1.1.[1];4:
_______ , __________ , _________
2 . (. 10.3.1 [1] ); : . 1): , ,
3 . (.10.6[1]); : (.
|
|
|
|
1. , |
|
|
|
2. , |
|
|
|
3. , ( ) |
|
|
|
. 3, (3x5) , .
, -, . , . . . , , , , , . .
-
:
T/-[(t)]=min{T[(t)]}njy, (8)
Hj y , j- .
, ..
T (t)]=min{T[(t)]}, (9)
Hy .
. 1.
. 2 .
. 2 . . , .
.
.
. 1.
.
2. . , . , .
3. .
4. , . - , .
5. , . .
6. - . , , .
7. , .
_______________ ______________
1. .. . 2011, .62, . 321325 (: )).
2. .., .. . - , 2013, .63, . 7-13 (: ).
3. .. , 1994, 3(5), . 7-8.
4. . .: , 2008, 256 .
5. ʻ. -: energo-a.ru
6. .. . ... . . . , 2007, 28 .
7. .. . . . , 1942, 6, . 332.
8. .. . . . , 1979, 4, . 196199.
9. Farhadzadeh E.M., Muradaliyev A.Z., Farzaliyev Y.Z. methods of modeling continuous random variables on empirical distributions. Reliability: Theory&applications. (USA), 2013, June., vol. 8, No. 2(29), pp. 4954.
10. .. . ... . . . , 2018, 27 .
[17.10.2018]
: 1961 .
(- , ).
1982 .
.
- -
().
1982 . . 2013 . ѻ. .
1985 . .
.
DOI:10.24160/0013-5380-2019-4-12-18
FARHADZADE Elmar M. (Azerbaijan Scientific Research Designing Institute of Power Engineering (ASRDIPE), Baku, Azerbaijan) Senior scientific researcher, Dr. Sci. (Eng.) MURADALIYEV Audin Z. (ASRDIPE, Baku, Azerbaijan) Head of the Department, Dr. Sci. (Eng.) ISMAILOVA SimuzarM. (ASRDIPE, Baku, Azerbaijan) Senior scientific researcher, Cand. Sci. (Eng.) YUSIFLY Revan F. (ASRDIPE, Baku, Azerbaijan) Engineer of Planning Department
The article presents the developed methods and algorithms for predicting the moment at which dangerous technical condition of a facility occurs based on a set of diagnostic parameter realizations of similar facilities. Application of the developed methods makes it possible to overcome a number of difficulties encountered in assessing safety parameters of facilities. The sedifficulties ares temming from the factthat the wearand its variation rate are random in nature; that the realizations of diagnostic parameters are multidimensional, and that manual calculations are cumbersome and laborious. The latter difficulty is over come by applying computer technologies as a computer-aided intellectual technical condition management subsystem.In view of the fact that diagnostic parameter realizations a remulti dimensional and random in nature, application of a fiducial approach seems to be advisable. One of the main objectives to besolvedin the course of operation is to reveal weak links of facilities, i.e., components determining the facility safety as a whole. The servic eliferemaining to the occurrence of dangerous technical state can becalculated manually using an experimental formula representing an analytical correlation between the critical value of remaining service life, number of realizations, and significance level. The se data, inturn, make it possible to characterize the facility technical condition in a five-mark grading system and to refine the maintenance strategy. A technique for producing particular recommendations on preventing a facility from transferring in a dangerous state and the output orms of the se recommendations are developed.
Key words: electric power systems, technical condition, multidimensional data, fiducial approach, simulation, algorithm
_______________ REFERENCES________________________
1. Voropai N.I. Metodicheskiye voprosy issledovaniya nadezhnosti bolshikh sistem energetiki in Russ. (Metodical questions of research of reliability of the large systems of energy), 2011,iss. 62, pp. 321325 (Ivanovo, PrecCTO).
2. Dyakov A.F., Isamukhammedov Ya.Sh. Metodicheskiye voprosy issledovaniya nadezhnosti bolshikh sistem energetiki in Russ. (Metodical questions of research of reliability of the large systems of energy), 2013, iss. 63, pp.713 (Baku, Publ. AzNIPIIE).
3. Orlov A.I. Nauka i tekhnologiya v Rossii in Russ. (Science and Technology in Russia), 1994, No. 3(5), pp. 78.
4. Obyem i normy ispytaniya elektrooborudovaniya (Volume and norms of test of equipment). Moscow, Publ. ENAS, 2008, 256 p.
5. Normy MEK. LLC Energo-Avtomatic: energo-a.ru
6. Rafiyeva F.K. Imitatsionnoye modelirovaniye individualnoi nadezhnosti...: Avtoref. diss. ... kand. tech. nauk). Baku, PrecCTO), 2007, 28 p.
7. Kolmogorov A.A. Izvestiya AN USSR. Matematika in Russ. (News of USSR Academy of Sciences. Mathematics), 1942, No. 6, pp. 3-32.
8. Farkhadzade E.M. Izvestiya AN SSSR, Technicheskaya kibernetika in Russ. (News of USSR Academy of sciences. Technical cybernetics), 1979, No. 4, pp. 196-199.
9. Farkhadzade E.M., Muradaliyev A.Z., Farzaliyev Y.Z. Comparison methods of modeling continuous random variables on empirical distributions. Reliability: Theory & applications. USA, 2013, June., vol. 8, No. 2(29), pp. 4954.
10. Abdullayeva S.A. Razrabotka metodov i algoritmov rascheta
pokazatelei...... : avtoref. diss... cand. techn. nauk (Development of
methods and algorithms of calculation of indexes. ...). Diss. for the Degree of Cand. Sci. (Eng.)). Baku, 2018, 27 p.
[17.10.2018]
Ссылки
- На текущий момент ссылки отсутствуют.